"""Performs face alignment and calculates L2 distance between the embeddings of images."""

# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE. from __future__ import absolute_import
from __future__ import division
from __future__ import print_function from scipy import misc
import tensorflow as tf
import numpy as np
import sys
import os
import argparse
import facenet
import align.detect_face def main():
model = "../models/20170216-091149"
image_files = ['compare_images/index10.png', 'compare_images/index73.png']
image_size = 160
margin = 44
gpu_memory_fraction = 0.5 images = load_and_align_data(image_files, image_size, margin, gpu_memory_fraction)
with tf.Graph().as_default(): with tf.Session() as sess: # Load the model
facenet.load_model(model) # Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") # Run forward pass to calculate embeddings
feed_dict = { images_placeholder: images, phase_train_placeholder:False }
emb = sess.run(embeddings, feed_dict=feed_dict) nrof_images = len(image_files) print('Images:')
for i in range(nrof_images):
print('%1d: %s' % (i, image_files[i]))
print('') # Print distance matrix
print('Distance matrix')
print(' ', end='')
for i in range(nrof_images):
print(' %1d ' % i, end='')
print('')
for i in range(nrof_images):
print('%1d ' % i, end='')
for j in range(nrof_images):
dist = np.sqrt(np.sum(np.square(np.subtract(emb[i,:], emb[j,:]))))
print(' %1.4f ' % dist, end='')
print('') def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths)
img_list = [None] * nrof_samples
for i in range(nrof_samples):
img = misc.imread(os.path.expanduser(image_paths[i]))
img_size = np.asarray(img.shape)[0:2]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
det = np.squeeze(bounding_boxes[0,0:4])
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img_size[1])
bb[3] = np.minimum(det[3]+margin/2, img_size[0])
cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
prewhitened = facenet.prewhiten(aligned)
img_list[i] = prewhitened
images = np.stack(img_list)
return images # def parse_arguments(argv):
# parser = argparse.ArgumentParser()
#
# parser.add_argument('model', type=str, default="./models/20170216-091149",
# help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file')
# parser.add_argument('image_files', type=str, default="src/compare_images/index10.png src/compare_images/index73.png "
# , nargs='+', help='Images to compare')
# parser.add_argument('--image_size', type=int,
# help='Image size (height, width) in pixels.', default=160)
# parser.add_argument('--margin', type=int,
# help='Margin for the crop around the bounding box (height, width) in pixels.', default=44)
# parser.add_argument('--gpu_memory_fraction', type=float,
# help='Upper bound on the amount of GPU memory that will be used by the process.', default=0.5)
# return parser.parse_args(argv) if __name__ == '__main__':
main()
"""Validate a face recognizer on the "Labeled Faces in the Wild" dataset (http://vis-www.cs.umass.edu/lfw/).
Embeddings are calculated using the pairs from http://vis-www.cs.umass.edu/lfw/pairs.txt and the ROC curve
is calculated and plotted. Both the model metagraph and the model parameters need to exist
in the same directory, and the metagraph should have the extension '.meta'.
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE. from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import os
import sys
import math
from sklearn import metrics
from scipy.optimize import brentq
from scipy import interpolate
import numpy
from PIL import Image,ImageDraw
import cv2 from scipy import misc
import argparse
import align.detect_face def detetet_face_init():
cap = cv2.VideoCapture(0)
print(cap.isOpened())
classifier=cv2.CascadeClassifier("./xml/haarcascade_frontalface_alt.xml")
count=0
return cap,classifier,count def detect_face_clear():
cap.release()
cv2.destroyAllWindows() def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths)
img_list = [None] * nrof_samples
for i in range(nrof_samples):
img = misc.imread(os.path.expanduser(image_paths[i]))
img_size = np.asarray(img.shape)[0:2]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
det = np.squeeze(bounding_boxes[0,0:4])
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img_size[1])
bb[3] = np.minimum(det[3]+margin/2, img_size[0])
cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
prewhitened = facenet.prewhiten(aligned)
img_list[i] = prewhitened
images = np.stack(img_list)
return images def compare_facevec(facevec1, facevec2):
dist = np.sqrt(np.sum(np.square(np.subtract(facevec1, facevec2))))
#print(' %1.4f ' % dist, end='')
return dist def face_recognition_using_facenet():
cap,classifier,count = detetet_face_init()
model = "../models/20170216-091149"
image_files = ['compare_images/index10.png', 'compare_images/index73.png']
image_size = 160
margin = 44
gpu_memory_fraction = 0.5
with tf.Graph().as_default():
with tf.Session() as sess:
# Load the model
facenet.load_model(model) # Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") #image_size = images_placeholder.get_shape()[1] # For some reason this doesn't work for frozen graphs
image_size = 160
embedding_size = embeddings.get_shape()[1]
index = 0
th = 0.7
face_recognition_tag = True
color = (0,255,0)
exist_face_vec = []
face_detect_vec = []
while count > -1:
ret,img = cap.read()
faceRects = classifier.detectMultiScale(img, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,(20,20))
if len(faceRects)>0:
for faceRect in faceRects:
x, y, w, h = faceRect
#cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0)
#print "save faceimg"
face_win = img[int(y):int(y) + int(h), int(x):int(x) + int(w)]
face_detect = cv2.resize(face_win,(image_size,image_size),interpolation=cv2.INTER_CUBIC)
#cv2.imwrite('faceimg/index' + str(index) + '.bmp', face_win)
# Run forward pass to calculate embeddings
#print('Runnning forward pass on face detect')
nrof_samples = 1
img_list = [None] * nrof_samples
prewhitened = facenet.prewhiten(face_detect)
img_list[0] = prewhitened
images = np.stack(img_list)
if index == 10:
feed_dict = {images_placeholder:images, phase_train_placeholder:False }
exist_face_vec = sess.run(embeddings, feed_dict=feed_dict)
elif index > 10 and index % 10 == 0:
feed_dict = {images_placeholder:images, phase_train_placeholder:False }
face_detect_vec = sess.run(embeddings, feed_dict=feed_dict)
cp = compare_facevec(face_detect_vec, exist_face_vec)
print("index ", index, " dist ", cp)
if cp < th:
print(True)
face_recognition_tag = True
else:
print(False)
face_recognition_tag = False
index +=1
# if face_recognition_tag == True:
# cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (255,0,0), 2,0)
# else:
# cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0)
cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0) cv2.imshow('video',img)
key=cv2.waitKey(1)
if key==ord('q'):
break
detect_face_clear(cap) if __name__ == '__main__':
face_recognition_using_facenet()

python 人脸识别的更多相关文章

  1. Python人脸识别最佳教材典范,40行代码搭建人脸识别系统!

    Face Id是一款高端的人脸解锁软件,官方称:"在一百万张脸中识别出你的脸."百度.谷歌.腾讯等各大企业都花费数亿来鞭策人工智能的崛起,而实际的人脸识别技术是否有那么神奇? 绿帽 ...

  2. python人脸识别

    需要掌握知识python,opencv和机器学习一类的基础 过一段时间代码上传github,本人菜j一个,虽然是我自己谢的,也有好多不懂,或者我这就是错误方向 链接:https://pan.baidu ...

  3. 【python人脸识别】使用opencv识别图片中的人脸

    概述: OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库 为什么有OpenCV? 计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种: 1.研究 ...

  4. Python人脸识别 + 手机推送,老板来了你就会收到短信提示

  5. 总结几个简单好用的Python人脸识别算法

    原文连接:https://mp.weixin.qq.com/s/3BgDld9hILPLCIlyysZs6Q 哈喽,大家好. 今天给大家总结几个简单.好用的人脸识别算法. 人脸识别是计算机视觉中比较常 ...

  6. OpenCV+python 人脸识别

    首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要 ...

  7. 简单的 Python 人脸识别实例

    案例一 导入图片 思路: 1.导入库 2.加载图片 3.创建窗口 4.显示图片 5.暂停窗口 6.关闭窗口 # 1.导入库 import cv2 # 2.加载图片 img = cv2.imread(' ...

  8. python人脸识别项目face-recognition

    该项目基于Github上面的开源项目人脸识别face-recognition,主要是对图像和视频中的人脸进行识别,在开源项目给出的例子基础上对视频人脸识别的KNN算法进行了实现. 0x1 工程项目结构 ...

  9. python 人脸识别试水(一)

    1.安装python,在这里我的版本是python 3.6 2.安装pycharm,我的版本是pycharm 2017 3.安装pip  pip 版本10 4.安装 numpy    :pip ins ...

随机推荐

  1. Matlab矩阵基本操作(定义,运算)

    转自:http://blog.csdn.net/perfumekristy/article/details/8119861 一.矩阵的表示在MATLAB中创建矩阵有以下规则: a.矩阵元素必须在”[ ...

  2. thinkphp session如何取数组

    thinkphp session如何取数组  session('user_auth.username'); 搞定!

  3. OpenERP财务管理若干概念讲解

    来自:http://shine-it.net/index.php/topic,2431.0.html 一.记账凭证(Account Move) 会计上的记账凭证,也叫会计分录,在OpenERP中叫&q ...

  4. 〖Linux〗(2013.08.02)使用ctag+cscope查看Android源代码

    1. 安装ctags和cscope sudo apt-get install -y exuberant-ctags cscope 2. vimrc中的配置 """&quo ...

  5. Android系统源代码——所需工具

    一.概述 众所周知,Android移动操作系统是Google花费了很大的财力.物力及人力的前提下,推广到世界各个角落,以开放源代码的方式(当然也不是完全开放所有),使其在世界范围内迅速漫延开来,到目前 ...

  6. Android 系统 root 破解原理分析 (续)

    上文<Android系统root破解原理分析>介绍了Android系统root破解之后,应用程序获得root权限的原理.有一些网友提出对于root破解过程比较感兴趣,也提出了疑问.本文将会 ...

  7. .net core +codefirst(.net core 基础入门,适合这方面的小白阅读) 【我们一起写框架】领域驱动设计的CodeFirst框架(一)—序篇

    .net core +codefirst(.net core 基础入门,适合这方面的小白阅读)   前言 .net core mvc和 .net mvc开发很相似,比如 视图-模型-控制器结构.所以. ...

  8. [Unity3D]Unity+Android交互教程——让手机&quot;动&quot;起来

    想要用Unity实现一个二维码扫描的功能,然后网上找插件,找到一个貌似叫EasyCodeScanner,但下载下来用用.真不好使,一导入执行就报错.调好错了再执行发现点button没反应.重复试了几遍 ...

  9. Linux系统里如何彻底的清空终端屏幕?

    Linux用户,特别是Ubuntu或CentOS用户,基本上都习惯使用clear命令或Ctrl+L组合快捷键来清空终端屏幕.但是,这样做其实并不是真正的清空屏幕,它只是给人一种错觉,让人以为屏幕清空了 ...

  10. NAT Network Address Translation,网络地址转换

    Network Address Translation,网络地址转换