"""Performs face alignment and calculates L2 distance between the embeddings of images."""

# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE. from __future__ import absolute_import
from __future__ import division
from __future__ import print_function from scipy import misc
import tensorflow as tf
import numpy as np
import sys
import os
import argparse
import facenet
import align.detect_face def main():
model = "../models/20170216-091149"
image_files = ['compare_images/index10.png', 'compare_images/index73.png']
image_size = 160
margin = 44
gpu_memory_fraction = 0.5 images = load_and_align_data(image_files, image_size, margin, gpu_memory_fraction)
with tf.Graph().as_default(): with tf.Session() as sess: # Load the model
facenet.load_model(model) # Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") # Run forward pass to calculate embeddings
feed_dict = { images_placeholder: images, phase_train_placeholder:False }
emb = sess.run(embeddings, feed_dict=feed_dict) nrof_images = len(image_files) print('Images:')
for i in range(nrof_images):
print('%1d: %s' % (i, image_files[i]))
print('') # Print distance matrix
print('Distance matrix')
print(' ', end='')
for i in range(nrof_images):
print(' %1d ' % i, end='')
print('')
for i in range(nrof_images):
print('%1d ' % i, end='')
for j in range(nrof_images):
dist = np.sqrt(np.sum(np.square(np.subtract(emb[i,:], emb[j,:]))))
print(' %1.4f ' % dist, end='')
print('') def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths)
img_list = [None] * nrof_samples
for i in range(nrof_samples):
img = misc.imread(os.path.expanduser(image_paths[i]))
img_size = np.asarray(img.shape)[0:2]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
det = np.squeeze(bounding_boxes[0,0:4])
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img_size[1])
bb[3] = np.minimum(det[3]+margin/2, img_size[0])
cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
prewhitened = facenet.prewhiten(aligned)
img_list[i] = prewhitened
images = np.stack(img_list)
return images # def parse_arguments(argv):
# parser = argparse.ArgumentParser()
#
# parser.add_argument('model', type=str, default="./models/20170216-091149",
# help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file')
# parser.add_argument('image_files', type=str, default="src/compare_images/index10.png src/compare_images/index73.png "
# , nargs='+', help='Images to compare')
# parser.add_argument('--image_size', type=int,
# help='Image size (height, width) in pixels.', default=160)
# parser.add_argument('--margin', type=int,
# help='Margin for the crop around the bounding box (height, width) in pixels.', default=44)
# parser.add_argument('--gpu_memory_fraction', type=float,
# help='Upper bound on the amount of GPU memory that will be used by the process.', default=0.5)
# return parser.parse_args(argv) if __name__ == '__main__':
main()
"""Validate a face recognizer on the "Labeled Faces in the Wild" dataset (http://vis-www.cs.umass.edu/lfw/).
Embeddings are calculated using the pairs from http://vis-www.cs.umass.edu/lfw/pairs.txt and the ROC curve
is calculated and plotted. Both the model metagraph and the model parameters need to exist
in the same directory, and the metagraph should have the extension '.meta'.
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE. from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import os
import sys
import math
from sklearn import metrics
from scipy.optimize import brentq
from scipy import interpolate
import numpy
from PIL import Image,ImageDraw
import cv2 from scipy import misc
import argparse
import align.detect_face def detetet_face_init():
cap = cv2.VideoCapture(0)
print(cap.isOpened())
classifier=cv2.CascadeClassifier("./xml/haarcascade_frontalface_alt.xml")
count=0
return cap,classifier,count def detect_face_clear():
cap.release()
cv2.destroyAllWindows() def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths)
img_list = [None] * nrof_samples
for i in range(nrof_samples):
img = misc.imread(os.path.expanduser(image_paths[i]))
img_size = np.asarray(img.shape)[0:2]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
det = np.squeeze(bounding_boxes[0,0:4])
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img_size[1])
bb[3] = np.minimum(det[3]+margin/2, img_size[0])
cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
prewhitened = facenet.prewhiten(aligned)
img_list[i] = prewhitened
images = np.stack(img_list)
return images def compare_facevec(facevec1, facevec2):
dist = np.sqrt(np.sum(np.square(np.subtract(facevec1, facevec2))))
#print(' %1.4f ' % dist, end='')
return dist def face_recognition_using_facenet():
cap,classifier,count = detetet_face_init()
model = "../models/20170216-091149"
image_files = ['compare_images/index10.png', 'compare_images/index73.png']
image_size = 160
margin = 44
gpu_memory_fraction = 0.5
with tf.Graph().as_default():
with tf.Session() as sess:
# Load the model
facenet.load_model(model) # Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") #image_size = images_placeholder.get_shape()[1] # For some reason this doesn't work for frozen graphs
image_size = 160
embedding_size = embeddings.get_shape()[1]
index = 0
th = 0.7
face_recognition_tag = True
color = (0,255,0)
exist_face_vec = []
face_detect_vec = []
while count > -1:
ret,img = cap.read()
faceRects = classifier.detectMultiScale(img, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,(20,20))
if len(faceRects)>0:
for faceRect in faceRects:
x, y, w, h = faceRect
#cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0)
#print "save faceimg"
face_win = img[int(y):int(y) + int(h), int(x):int(x) + int(w)]
face_detect = cv2.resize(face_win,(image_size,image_size),interpolation=cv2.INTER_CUBIC)
#cv2.imwrite('faceimg/index' + str(index) + '.bmp', face_win)
# Run forward pass to calculate embeddings
#print('Runnning forward pass on face detect')
nrof_samples = 1
img_list = [None] * nrof_samples
prewhitened = facenet.prewhiten(face_detect)
img_list[0] = prewhitened
images = np.stack(img_list)
if index == 10:
feed_dict = {images_placeholder:images, phase_train_placeholder:False }
exist_face_vec = sess.run(embeddings, feed_dict=feed_dict)
elif index > 10 and index % 10 == 0:
feed_dict = {images_placeholder:images, phase_train_placeholder:False }
face_detect_vec = sess.run(embeddings, feed_dict=feed_dict)
cp = compare_facevec(face_detect_vec, exist_face_vec)
print("index ", index, " dist ", cp)
if cp < th:
print(True)
face_recognition_tag = True
else:
print(False)
face_recognition_tag = False
index +=1
# if face_recognition_tag == True:
# cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (255,0,0), 2,0)
# else:
# cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0)
cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0) cv2.imshow('video',img)
key=cv2.waitKey(1)
if key==ord('q'):
break
detect_face_clear(cap) if __name__ == '__main__':
face_recognition_using_facenet()

python 人脸识别的更多相关文章

  1. Python人脸识别最佳教材典范,40行代码搭建人脸识别系统!

    Face Id是一款高端的人脸解锁软件,官方称:"在一百万张脸中识别出你的脸."百度.谷歌.腾讯等各大企业都花费数亿来鞭策人工智能的崛起,而实际的人脸识别技术是否有那么神奇? 绿帽 ...

  2. python人脸识别

    需要掌握知识python,opencv和机器学习一类的基础 过一段时间代码上传github,本人菜j一个,虽然是我自己谢的,也有好多不懂,或者我这就是错误方向 链接:https://pan.baidu ...

  3. 【python人脸识别】使用opencv识别图片中的人脸

    概述: OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库 为什么有OpenCV? 计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种: 1.研究 ...

  4. Python人脸识别 + 手机推送,老板来了你就会收到短信提示

  5. 总结几个简单好用的Python人脸识别算法

    原文连接:https://mp.weixin.qq.com/s/3BgDld9hILPLCIlyysZs6Q 哈喽,大家好. 今天给大家总结几个简单.好用的人脸识别算法. 人脸识别是计算机视觉中比较常 ...

  6. OpenCV+python 人脸识别

    首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要 ...

  7. 简单的 Python 人脸识别实例

    案例一 导入图片 思路: 1.导入库 2.加载图片 3.创建窗口 4.显示图片 5.暂停窗口 6.关闭窗口 # 1.导入库 import cv2 # 2.加载图片 img = cv2.imread(' ...

  8. python人脸识别项目face-recognition

    该项目基于Github上面的开源项目人脸识别face-recognition,主要是对图像和视频中的人脸进行识别,在开源项目给出的例子基础上对视频人脸识别的KNN算法进行了实现. 0x1 工程项目结构 ...

  9. python 人脸识别试水(一)

    1.安装python,在这里我的版本是python 3.6 2.安装pycharm,我的版本是pycharm 2017 3.安装pip  pip 版本10 4.安装 numpy    :pip ins ...

随机推荐

  1. IOS8 Playground介绍

    一.Playground介绍 Playground是Xcode6中自带的Swift代码开发环境.俗话说"功欲善其事,必先利其器".曾经在Xcode5中编写脚本代码,比如编写JS,其 ...

  2. GNU C中的零长度数组

    http://blog.csdn.net/ssdsafsdsd/article/details/8234736 在标准C和C++中,长度为0的数组是被禁止使用的.不过在GNU C中,存在一个非常奇怪的 ...

  3. 〖Qt编程〗Qt编程中的各种数据类型的相互转换

    char * 与 const char *的转换 char *ch1=”hello11″; const char *ch2=”hello22″; ch2 = ch1;//不报错,但有警告 ch1 = ...

  4. FFmpeg进行屏幕录像和录音

    文章转自:http://www.cucer.cn/2016/03/10/ffmpeg-screen-capture.html 有些时候我们需要对屏幕进行录制,比如制作视频教程,录制直播等.然而这方面的 ...

  5. tsung的配置使用

    1.在root下新建.tsung文件,在.tsung文件新建log文件夹..tsung文件用于存放log和xml文件 2.复制/usr/local/tsung/share/doc/tsung/exam ...

  6. 手动集成OWIN

    1.Install-Package Microsoft.AspNet.Identity.Owin Owin的很大亮点之一就是它可以让我们的ASP.NET 网站摆脱IIS,但是毕竟大多数的ASP.NET ...

  7. intelliJ IDEA 配置MySQL数据库 详解

    1> 在主界面中,点击右边侧栏的 Database ,在点击 + ,再Data Source 选择数据库   2> 填入 Database 数据库名,在输入 User 和 Password ...

  8. linux学习规划

  9. ubuntu中rc.local无效

    在ubuntu中写了一点iptables规则,但是,竟然iptables竟然无效,经过多方查找问题...眼泪... 终于发现是rc.local竟然没有运行,我晕.仔细检查iptables脚本n遍,没有 ...

  10. js基本知识6

    1.2 复习 1. 节点 网页是有很多的节点组成的 . 元素节点 指的是 : 标签 li span 文本节点 属性节点 父子兄弟 父 parentNode nextSibling 孩子 childNo ...