python 人脸识别
"""Performs face alignment and calculates L2 distance between the embeddings of images.""" # MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE. from __future__ import absolute_import
from __future__ import division
from __future__ import print_function from scipy import misc
import tensorflow as tf
import numpy as np
import sys
import os
import argparse
import facenet
import align.detect_face def main():
model = "../models/20170216-091149"
image_files = ['compare_images/index10.png', 'compare_images/index73.png']
image_size = 160
margin = 44
gpu_memory_fraction = 0.5 images = load_and_align_data(image_files, image_size, margin, gpu_memory_fraction)
with tf.Graph().as_default(): with tf.Session() as sess: # Load the model
facenet.load_model(model) # Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") # Run forward pass to calculate embeddings
feed_dict = { images_placeholder: images, phase_train_placeholder:False }
emb = sess.run(embeddings, feed_dict=feed_dict) nrof_images = len(image_files) print('Images:')
for i in range(nrof_images):
print('%1d: %s' % (i, image_files[i]))
print('') # Print distance matrix
print('Distance matrix')
print(' ', end='')
for i in range(nrof_images):
print(' %1d ' % i, end='')
print('')
for i in range(nrof_images):
print('%1d ' % i, end='')
for j in range(nrof_images):
dist = np.sqrt(np.sum(np.square(np.subtract(emb[i,:], emb[j,:]))))
print(' %1.4f ' % dist, end='')
print('') def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths)
img_list = [None] * nrof_samples
for i in range(nrof_samples):
img = misc.imread(os.path.expanduser(image_paths[i]))
img_size = np.asarray(img.shape)[0:2]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
det = np.squeeze(bounding_boxes[0,0:4])
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img_size[1])
bb[3] = np.minimum(det[3]+margin/2, img_size[0])
cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
prewhitened = facenet.prewhiten(aligned)
img_list[i] = prewhitened
images = np.stack(img_list)
return images # def parse_arguments(argv):
# parser = argparse.ArgumentParser()
#
# parser.add_argument('model', type=str, default="./models/20170216-091149",
# help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file')
# parser.add_argument('image_files', type=str, default="src/compare_images/index10.png src/compare_images/index73.png "
# , nargs='+', help='Images to compare')
# parser.add_argument('--image_size', type=int,
# help='Image size (height, width) in pixels.', default=160)
# parser.add_argument('--margin', type=int,
# help='Margin for the crop around the bounding box (height, width) in pixels.', default=44)
# parser.add_argument('--gpu_memory_fraction', type=float,
# help='Upper bound on the amount of GPU memory that will be used by the process.', default=0.5)
# return parser.parse_args(argv) if __name__ == '__main__':
main()
"""Validate a face recognizer on the "Labeled Faces in the Wild" dataset (http://vis-www.cs.umass.edu/lfw/).
Embeddings are calculated using the pairs from http://vis-www.cs.umass.edu/lfw/pairs.txt and the ROC curve
is calculated and plotted. Both the model metagraph and the model parameters need to exist
in the same directory, and the metagraph should have the extension '.meta'.
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE. from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import os
import sys
import math
from sklearn import metrics
from scipy.optimize import brentq
from scipy import interpolate
import numpy
from PIL import Image,ImageDraw
import cv2 from scipy import misc
import argparse
import align.detect_face def detetet_face_init():
cap = cv2.VideoCapture(0)
print(cap.isOpened())
classifier=cv2.CascadeClassifier("./xml/haarcascade_frontalface_alt.xml")
count=0
return cap,classifier,count def detect_face_clear():
cap.release()
cv2.destroyAllWindows() def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths)
img_list = [None] * nrof_samples
for i in range(nrof_samples):
img = misc.imread(os.path.expanduser(image_paths[i]))
img_size = np.asarray(img.shape)[0:2]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
det = np.squeeze(bounding_boxes[0,0:4])
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img_size[1])
bb[3] = np.minimum(det[3]+margin/2, img_size[0])
cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
prewhitened = facenet.prewhiten(aligned)
img_list[i] = prewhitened
images = np.stack(img_list)
return images def compare_facevec(facevec1, facevec2):
dist = np.sqrt(np.sum(np.square(np.subtract(facevec1, facevec2))))
#print(' %1.4f ' % dist, end='')
return dist def face_recognition_using_facenet():
cap,classifier,count = detetet_face_init()
model = "../models/20170216-091149"
image_files = ['compare_images/index10.png', 'compare_images/index73.png']
image_size = 160
margin = 44
gpu_memory_fraction = 0.5
with tf.Graph().as_default():
with tf.Session() as sess:
# Load the model
facenet.load_model(model) # Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") #image_size = images_placeholder.get_shape()[1] # For some reason this doesn't work for frozen graphs
image_size = 160
embedding_size = embeddings.get_shape()[1]
index = 0
th = 0.7
face_recognition_tag = True
color = (0,255,0)
exist_face_vec = []
face_detect_vec = []
while count > -1:
ret,img = cap.read()
faceRects = classifier.detectMultiScale(img, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,(20,20))
if len(faceRects)>0:
for faceRect in faceRects:
x, y, w, h = faceRect
#cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0)
#print "save faceimg"
face_win = img[int(y):int(y) + int(h), int(x):int(x) + int(w)]
face_detect = cv2.resize(face_win,(image_size,image_size),interpolation=cv2.INTER_CUBIC)
#cv2.imwrite('faceimg/index' + str(index) + '.bmp', face_win)
# Run forward pass to calculate embeddings
#print('Runnning forward pass on face detect')
nrof_samples = 1
img_list = [None] * nrof_samples
prewhitened = facenet.prewhiten(face_detect)
img_list[0] = prewhitened
images = np.stack(img_list)
if index == 10:
feed_dict = {images_placeholder:images, phase_train_placeholder:False }
exist_face_vec = sess.run(embeddings, feed_dict=feed_dict)
elif index > 10 and index % 10 == 0:
feed_dict = {images_placeholder:images, phase_train_placeholder:False }
face_detect_vec = sess.run(embeddings, feed_dict=feed_dict)
cp = compare_facevec(face_detect_vec, exist_face_vec)
print("index ", index, " dist ", cp)
if cp < th:
print(True)
face_recognition_tag = True
else:
print(False)
face_recognition_tag = False
index +=1
# if face_recognition_tag == True:
# cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (255,0,0), 2,0)
# else:
# cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0)
cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0) cv2.imshow('video',img)
key=cv2.waitKey(1)
if key==ord('q'):
break
detect_face_clear(cap) if __name__ == '__main__':
face_recognition_using_facenet()
python 人脸识别的更多相关文章
- Python人脸识别最佳教材典范,40行代码搭建人脸识别系统!
Face Id是一款高端的人脸解锁软件,官方称:"在一百万张脸中识别出你的脸."百度.谷歌.腾讯等各大企业都花费数亿来鞭策人工智能的崛起,而实际的人脸识别技术是否有那么神奇? 绿帽 ...
- python人脸识别
需要掌握知识python,opencv和机器学习一类的基础 过一段时间代码上传github,本人菜j一个,虽然是我自己谢的,也有好多不懂,或者我这就是错误方向 链接:https://pan.baidu ...
- 【python人脸识别】使用opencv识别图片中的人脸
概述: OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库 为什么有OpenCV? 计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种: 1.研究 ...
- Python人脸识别 + 手机推送,老板来了你就会收到短信提示
- 总结几个简单好用的Python人脸识别算法
原文连接:https://mp.weixin.qq.com/s/3BgDld9hILPLCIlyysZs6Q 哈喽,大家好. 今天给大家总结几个简单.好用的人脸识别算法. 人脸识别是计算机视觉中比较常 ...
- OpenCV+python 人脸识别
首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要 ...
- 简单的 Python 人脸识别实例
案例一 导入图片 思路: 1.导入库 2.加载图片 3.创建窗口 4.显示图片 5.暂停窗口 6.关闭窗口 # 1.导入库 import cv2 # 2.加载图片 img = cv2.imread(' ...
- python人脸识别项目face-recognition
该项目基于Github上面的开源项目人脸识别face-recognition,主要是对图像和视频中的人脸进行识别,在开源项目给出的例子基础上对视频人脸识别的KNN算法进行了实现. 0x1 工程项目结构 ...
- python 人脸识别试水(一)
1.安装python,在这里我的版本是python 3.6 2.安装pycharm,我的版本是pycharm 2017 3.安装pip pip 版本10 4.安装 numpy :pip ins ...
随机推荐
- T-SQL 之 表变量和临时表
一.表变量 表变量在SQL Server 2000中首次被引入.表变量的具体定义包括列定义,列名,数据类型和约束.而在表变量中可以使用的约束包括主键约束,唯一约束,NULL约束和CHECK约束(外键约 ...
- SQLServer 之 Group By 和 Compute By
创建测试表,如下: CREATE TABLE tableTest ( Id INT PRIMARY KEY, DepartMent ), Name ), Salary int ) 添加测试数据,如下图 ...
- Mysql创建、删除用户、查询所有用户等教程,提升您的MYSQL安全度!
建议您不要使用mysql的root账号来为您的web页面连接数据库,这可能会导致用户通过网页获取到您的数据库账号密码,存在严重的安全隐患. 建议新建一账号,权限设置基本够用,然后使用那新建的账号来连接 ...
- postgres时间转换函数
函数 返回类型 描述 例子 to_char(timestamp, text) text 把时间戳转换成字串 to_char(current_timestamp, 'HH12:MI:SS') to_ch ...
- sql各种连接详解
迁移时间:2017年6月1日16:33:58 CreateTime--2016年9月14日11:19:00Author:Marydon sql各种连接详解 参考链接: http://www.jb5 ...
- docker sshd image problem, session required pam_loginuid.so, cann't login
在使用sshd docker 镜像时, 发现一个比较诡异的问题, 有些启动的容器可以连接, 有些不能. 例如 : 启动2个容器(这两个容器都有问题) : [root@localhost ~]# d ...
- MySQL中group_concat函数
本文通过实例介绍了MySQL中的group_concat函数的使用方法,比如select group_concat(name) .MySQL中group_concat函数完整的语法如下:group_c ...
- 中文latex参考文献格式
中文latex参考文献格式 原来英文: \begin{thebibliography}{1} \bibitem{Ben-Shimon2015RecSys} D.~Ben-Shimon, A.~Tsik ...
- android系统特效详解和修改方法
安卓系统特效相关文件: 存在于:framework-res.apk 反编译后的\framework-res\res\anim文件夹内!anim文件夹下所有的文件都是特效文件原理 反编译fram ...
- C# 之 FTPserver中文件上传与下载(一)
近期接手这样一个文件上传到ftpserver的一个功能,接下来就给大家解析一下这一功能. 首先,今天我们要讲的是怎么创建一个FTPserver. 1.首先我们创建一个用户,当然不想创建 ...