HDU4910 Problem about GCD
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目链接:HDU4910
正解:线性筛+$Miller-Rabin$
解题报告:
我也是醉了,开始用$Pollard-rho$一直TLE,只好给成线性筛然后除,结果又一直$WA$,突然发现我的预处理只做到了$10^5$然而应该做到$10^6$…
我打了表,发现有一些神奇的规律,首先答案只能是$1$或者$n-1$。
如果$n$的质因子中有超过$2$个$2$,即是$4$的倍数则$ans=1$。
接下来的判断中,$n$是偶数,先把$n$除以二,再判断。
如果$n$有超过$1$个质因子则输出$1$,否则输出$-1$。
考虑范围内的数最多能有$2$个$>$$10^6$的质因子,暴力做就好了。
//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
using namespace std;
typedef long long LL;
const int MAXN = 1000011;
int prime[MAXN],cnt;
bool vis[MAXN];
inline LL mul(LL x,LL y,LL mod){ LL r=0; while(y>0) { if(y&1) r+=x,r%=mod; x+=x; x%=mod; y>>=1; } return r; }
inline LL fast_pow(LL x,LL y,LL mod){ LL r=1; while(y>0) { if(y&1) r=mul(r,x,mod); x=mul(x,x,mod); y>>=1; } return r; }
inline LL getint(){
LL w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void init(){
for(int i=2;i<=1000000;i++) {
if(!vis[i]) { prime[++cnt]=i; }
for(int j=1;j<=cnt && prime[j]*i<=1000000;i++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
} inline int Miller_Rabin(LL n){
if(n==1) return 0; if(n==2) return 1; if(!(n&1)) return 0;
int T=5,k=0; LL aa,nn=n-1,bb,cc;
while(!(nn&1)) nn>>=1,k++;
while(T--) {
aa=rand()%(n-1)+1;
bb=fast_pow(aa,nn,n);
for(int i=1;i<=k;i++) {
cc=mul(bb,bb,n);
if(cc==1 && bb!=1 && bb!=n-1) return 0;
bb=cc;
}
if(bb!=1) return 0;
}
return 1;
} inline void work(){
init();
while(1) {
LL n=getint(),m; if(n==-1) break;
bool flag=0; if(n==1 || n==2 || n==4) { printf("%I64d\n",n-1); continue; }
if(n%4==0) { printf("1\n"); continue; }
m=n; if(m%2==0) m>>=1;
for(int i=1;i<=cnt;i++) {
if(m%prime[i]==0) {
flag=1;
while(m%prime[i]==0) m/=prime[i];
break;
}
} if(flag==1) {
if(m==1) printf("%I64d\n",n-1);
else printf("1\n");
}
else {
if(Miller_Rabin(m)) printf("%I64d\n",n-1);
else {
LL kai=(LL)sqrt(m);
if(kai*kai==m) printf("%I64d\n",n-1);
else printf("1\n");
}
}
}
} int main()
{
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
HDU4910 Problem about GCD的更多相关文章
- HDU 4910 Problem about GCD 找规律+大素数判断+分解因子
Problem about GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- 数学--数论--HDU 1792 A New Change Problem (GCD+打表找规律)
Problem Description Now given two kinds of coins A and B,which satisfy that GCD(A,B)=1.Here you can ...
- Leetcode: Water and Jug Problem && Summary: GCD求法(辗转相除法 or Euclidean algorithm)
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...
- FZU2224 An exciting GCD problem 区间gcd预处理+树状数组
分析:(别人写的) 对于所有(l, r)区间,固定右区间,所有(li, r)一共最多只会有log个不同的gcd值, 可以nlogn预处理出所有不同的gcd区间,这样区间是nlogn个,然后对于询问离线 ...
- 2018.09.23 codeforces 1053A. In Search of an Easy Problem(gcd)
传送门 今天的签到题. 有一个很显然的结论,gcd(n∗m,k)≤2gcd(n*m,k)\le 2gcd(n∗m,k)≤2. 本蒟蒻是用的行列式求三角形面积证明的. 如果满足这个条件,就可以直接构造出 ...
- HDU 4910 HDOJ Problem about GCD BestCoder #3 第四题
首先 m = 1 时 ans = 0对于 m > 1 的 情况 由于 1 到 m-1 中所有和m互质的数字,在 对m的乘法取模 运算上形成了群 ai = ( 1<=a<m & ...
- HDU 5974"A Simple Math Problem"(GCD(a,b) = GCD(a+b,ab) = 1)
传送门 •题意 已知 $a,b$,求满足 $x+y=a\ ,\ LCM(x,y)=b$ 条件的 $x,y$: 其中,$a,b$ 为正整数,$x,y$ 为整数: •题解 关键式子:设 $a,b$ 为正整 ...
- [数论] hdu 5974 A Simple Math Problem (数论gcd)
传送门 •题意 一直整数$a,b$,有 $\left\{\begin{matrix}x+y=a\\ LCM(x*y)=b \end{matrix}\right.$ 求$x,y$ •思路 解题重点:若$ ...
- 2016 大连网赛---Different GCD Subarray Query(GCD离散+树状数组)
题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5869 Problem Description This is a simple probl ...
随机推荐
- bug-sqlite3
[root@izj6c6b4i40od17ev77lhez Python-3.7.0]# python Python 3.7.0 (default, Sep 5 2018, 00:40:27) [GC ...
- SIP UserAgent (B2BUA client)——pjsip
SIP UserAgent常用的SIP协议栈有pjsip/bell-sip/sofia-sip/libeXosip/libre等 https://github.com/staskobzar/sip_s ...
- mysql不乱码的思想总结
不乱码的思想:中文环境下建议选择utf-8 1.linux服务器端的设置: 1 [root@localhost app]# cat /etc/sysconfig/i18n 2 LANG="e ...
- 不受路径限制的 HALCON开发环境, 并且初始化两个Picture控件;
知识储备: http://bbs.csdn.net/topics/391829463 关于 添加第三方库的方式 http://www.ihalcon.com/read-3730.html VS ...
- mysql数据库优化的几种方法
1.选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快.因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽 ...
- 数据库(11)-- Hash索引和BTree索引 的区别
索引是帮助mysql获取数据的数据结构.最常见的索引是Btree索引和Hash索引. 不同的引擎对于索引有不同的支持:Innodb和MyISAM默认的索引是Btree索引:而Mermory默认的索引是 ...
- [C语言]小记q = (++j) + (++j) + (++j)的值
根据不同的编译器,生产的代码不一样,导致的结果也会不一样. 代码如下: #include <stdio.h> void main() { ; int q; q =(++j)+(++j)+( ...
- css伪类与伪元素
原文:http://www.alloyteam.com/2016/05/summary-of-pseudo-classes-and-pseudo-elements/ 伪类的操作对象是文档树中已有的元素 ...
- vue父子组件传值加例子
例子:http://element-cn.eleme.io/#/zh-CN/component/form 上进行改的 父传子:用prop:子组件能够改变父组件的值,是共享的,和父操作是 ...
- scala drools and map
需求,安全检查,例如Linux系统,用户安全检查,配置项检查等,这些检查的规则在Drools里面去实现,数据传送过来即可, 问题:如何定义数据结构,不同的检查项会有不同的数据结构,如何规范呢? 思路: ...