继上次分享了经典统计语言模型,最近公众号中有很多做NLP朋友问到了关于word2vec的相关内容, 本文就在这里整理一下做以分享。 本文分为

  • 概括word2vec
  • 相关工作
  • 模型结构
  • Count-based方法 vs. Directly predict

几部分,暂时没有加实验章节,但其实感觉word2vec一文中实验还是做了很多工作的,希望大家有空最好还是看一下~


概括word2vec

要解决的问题: 在神经网络中学习将word映射成连续(高维)向量, 其实就是个词语特征求取。

特点: 
1. 不同于之前的计算cooccurrence次数方法,减少计算量 
2. 高效 
3. 可以轻松将一个新句子/新词加入语料库

主要思想:神经网络语言模型可以用两步进行训练:1. 简单模型求取word vector; 在求取特征向量时,预测每个词周围的词作为cost 2. 在word vector之上搭建N-gram NNLM,以输出词语的概率为输出进行训练。


相关工作

在传统求取word的空间向量表征时, LSA 将词和文档映射到潜在语义空间,从而去除了原始向量空间中的一些“噪音”,但它无法保存词与词之间的linear regularities; LDA 是一个三层贝叶斯概率模型,包含词、主题和文档三层结构。文档到主题服从Dirichlet分布,主题到词服从多项式分布, 但是只要训练数据大了, 计算量就一下飚了。

基于神经网络的词语向量表征方法在[Y. Bengio, R. Ducharme, P. Vincent. A neural probabilistic language model, JMLR 2003]中就有提出, 名为NNLM, 它是一个前向网络, 同时学习词语表征和一个统计语言模型(后面具体讲)。

在Mikolov的硕士论文[1]和他在ICASSP 2009上发表的文章[2]中, 用一个单隐层网络训练词语表征, 然后将这个表征作为NNLM的输入进行训练。 Word2vec是训练词语表征工作的一个拓展。


模型结构

首先回顾NNLM,RNNLM,然后来看Word2Vec中提出的网络——CBOW,skip-gram Model。

1 . NNLM[3]

NNLM的目标是在一个NN里,求第t个词的概率, 即

其中f是这个神经网络, 包括 input,projection, hidden和output。将其分解为两个映射:C和g,C是word到word vector的特征映射(通过一个|V|*D的映射矩阵实现),也称作look-up table, g是以word特征为输入,输出|V|个词语概率的映射:

如下图所示: 
输入: n个之前的word(其实是他们的在词库V中的index) 
映射: 通过|V|*D的矩阵C映射到D维 
隐层: 映射层连接大小为H的隐层 
输出: 输出层大小为|V|,表示|V|个词语的概率

用parameter个数度量网络复杂度, 则这个网络的复杂度为:

O=N∗D+N∗D∗H+H∗V

其中复杂度最高的部分为H*V, 但通常可以通过hierarchical softmax或binary化词库编码将|V|降至log2V, 这样计算瓶颈就在于隐层N∗D∗H了。在word2vec中,为了避免隐层带来的高计算复杂度而去掉了隐层。

2 . RNNLM

RNN在语言模型上优于其他神经网络,因为不用像上面NNLM中的输入要定死前N个词的N。(具体RNN的结构我会在下篇中讲)简单地说, RNN就是一个隐层自我相连的网络, 隐层同时接收来自t时刻输入和t-1时刻的输出作为输入, 这使得RNN具有短期记忆能力, 所以RNNLM的复杂度为:

O=H∗H+H∗V

同样地,其中H∗V也可以降至log2V, 瓶颈就在于H∗H了。

由于复杂度最大的部分都在hidden layer, 而且我们的中级目标是提特征(而不是生成语言模型),文中就想能不能牺牲hidden layer的非线性部分, 从而高效训练。 这也是Word2vec中速度提升最多的部分。 这也就是一个Log linear model。所以本质上, word2vec并不是一个深度模型。文中提出了两种log linear model,如下面所述。

3 . Proposed Method 1 - Continuous Bag-of-Words(CBOW) Model

CBOW的网络结构和NNLM类似,变化:

  1. CBOW去掉了NNLM的非线性部分
  2. CBOW不考虑word之间的先后顺序, 一起放进bag,也就是在上面NNLM的projection层将映射后的结果求和/求平均(而非按照先后顺序连接起来)
  3. 输入不止用了历史词语,还用了未来词语。 即, 用t-n+1…t-1,t+1,…t+n-1的word作为输入,目标是正确分类得到第t个word。 
    PS: 实验中得到的best n=4

CBOW的复杂度为:

O=N∗D+D∗log2V

CBOW结构图:

3 . Proposed Method 2 - Continuous Skip-gram Model

与CBOW相反,Continuous Skip-gram Model不利用上下文。 其输入为当前word,经过projection的特征提取去预测该word周围的c个词,其cost function为:

如下图所示。这里c增大有利于模型的完备性, 但过大的c可能造成很多无关词语相关联, 因此用随机采样方法,远的词少采, 近的多采。

比如定义最大周围距离为C,则对于每个词w(t),就选择距离为R=range(1,C), 选前后各R个词作为预测结果。 
所以,Continuous Skip-gram Model的复杂度为:

O=2C∗(D+D∗log2V)

具体来说,最简单的情况下, P(wt+j|wt)的表达式可以为:

其中v和v’分别为输入和输出中的word特征向量。所以说, word2vec方法本质上是一个动态的逻辑回归。


Count-based方法 vs. Directly predict

最后我们看一下之前我们讲过的几个基于统计的传统语言模型与word2vec这种直接预测的方法的比较:

图片摘自Stanford CS244。


参考文献:

    1. NNLM: Y. Bengio, R. Ducharme, P. Vincent. A neural probabilistic language model, JMLR 2003
    2. 类似工作:T. Mikolov. Language Modeling for Speech Recognition in Czech, Masters thesis
    3. 类似工作:T. Mikolov, J. Kopecky´, L. Burget, O. Glembek and J. Cˇ ernocky´. Neural network based language models for higly inflective languages, In: Proc. ICASSP 2009.]
    4. 类似工作:Pennington J, Socher R, Manning C D. Glove: Global vectors for word representation[J]. Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), 2014, 12.
    5. from: http://blog.csdn.net/abcjennifer/article/details/46397829

word2vec——高效word特征提取的更多相关文章

  1. word2vec和word embedding有什么区别?

    word2vec和word embedding有什么区别? 我知道这两个都能将词向量化,但有什么区别?这两个术语的中文是什么? from: https://www.zhihu.com/question ...

  2. word2vec高效训练方法

    在word2vec原理中讲到如果每个词向量由300个元素组成,并且一个单词表中包含了10000个单词.回想神经网络中有两个权重矩阵——一个在隐藏层,一个在输出层.这两层都具有300 x 10000 = ...

  3. 重磅︱文本挖掘深度学习之word2vec的R语言实现

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:2013年末,Google发布的 w ...

  4. word2vec词向量训练及中文文本类似度计算

    本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python ...

  5. 学习笔记TF034:实现Word2Vec

    卷积神经网络发展趋势.Perceptron(感知机),1957年,Frank Resenblatt提出,始祖.Neocognitron(神经认知机),多层级神经网络,日本科学家Kunihiko fuk ...

  6. 深入理解Word2Vec

    Word2Vec Tutorial - The Skip-Gram Model,Skip-Gram模型的实现原理:http://mccormickml.com/2016/04/19/word2vec- ...

  7. word2vec详解与实战

    有那么一句话 不懂word2vec,就别说自己是研究人工智能->机器学习->自然语言处理(NLP)->文本挖掘的 所以接下来我就从头至尾的详细讲解一下word2vec这个东西. 简要 ...

  8. 理解Word2Vec

    一.简介 Word2vec 是 Word Embedding 的方法之一,属于NLP 领域.它是将词转化为「可计算」「结构化」的向量的过程.它是 2013 年由谷歌的 Mikolov 提出了一套新的词 ...

  9. Word2Vec在中文的应用

    google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与t ...

随机推荐

  1. php7+apache的环境安装配置

    因为刚开始接触php,所以要对php的开发环境进行搭建. 1.首先到Apache的官网下载最新版: http://httpd.apache.org/download.cgi: 参照该网址配置Apach ...

  2. 向Array中添加快速排序

    快速排序思路 1) 假设第一个元素为基准元素 2) 把所有比基准元素小的记录放置在前一部分,把所有比基准元素大的记录放置在后一部分,并把基准元素放在这两部分的中间(i=j的位置) 快速排序实现 Fun ...

  3. Linux 下Valgrind 使用

    Valgrind包括如下一些工具: Memcheck.这是valgrind应用最广泛的工具,一个重量级的内存检查器,能够发现开发中绝大多数内存错误使用情况,比如:使用未初始化的内存,使用已经释放了的内 ...

  4. 服务器NPC的ID如何分配的

    服务器ID分配包括NPC,Monster,Pet的ID分配都是调用allocateUID然后自动保存的ID加一,pet说是通过玩家的ID移位获得的,调试一下发现还是调用allocateUID,如果通过 ...

  5. 科学家有了钱以后,真是挺吓人的——D.E.Shaw的牛逼人生

    科学家有了钱以后,真是挺吓人的——D.E.Shaw的牛逼人生 黑科技,还是要提D.E.Shaw Research这个奇异的存在. 要讲这个黑科技,我们可能要扯远一点,先讲讲D.E. Shaw这个人是怎 ...

  6. JavaScript面向对象+Array的用法及字符串组合+动态建立锚点

    脚本部分: function school(sName,sDddress,sPhone,sMail) { this.SName = sName; this.SAddress = sDddress; t ...

  7. JavaScript call和apply的用法

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  8. maven编译时候报"编码 GBK 的不可映射字符"

    决这个问题的思路: 在maven的编译插件中声明正确的字符集编码编码——编译使用的字符集编码与代码文件使用的字符集编码一致!! 安装系统之后,一般中文系统默认字符集是GBK.我们安装的软件一般都继承使 ...

  9. 简单验证码识别 tessnet2

    今天突然间对识别验证码感兴趣,于是网上搜了一下 最简单的是引用tessnet2.dll,然后通过它来识别,代码如下 private void button1_Click(object sender, ...

  10. SSH开发实践part1:Spring与Hibernate整合

    1 之前把SSH看完了,现在从头开始进行项目实践.现在讲整个过程中的点滴记录下来,希望对后来者有参考. 2 SSH是一个轻量级的java开发框架,struts负责MVC开发模式中的controller ...