http://acm.hdu.edu.cn/showproblem.php?pid=4289

Control

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2247    Accepted Submission(s): 940

Problem Description
  You, the head of Department of Security, recently received a top-secret information that a group of terrorists is planning to transport some WMD 1 from one city (the source) to another one (the destination). You know their date, source and destination, and they are using the highway network.
  The highway network consists of bidirectional highways, connecting two distinct city. A vehicle can only enter/exit the highway network at cities only.
  You may locate some SA (special agents) in some selected cities, so that when the terrorists enter a city under observation (that is, SA is in this city), they would be caught immediately.
  It is possible to locate SA in all cities, but since controlling a city with SA may cost your department a certain amount of money, which might vary from city to city, and your budget might not be able to bear the full cost of controlling all cities, you must identify a set of cities, that:
  * all traffic of the terrorists must pass at least one city of the set.
  * sum of cost of controlling all cities in the set is minimal.
  You may assume that it is always possible to get from source of the terrorists to their destination.
------------------------------------------------------------
1 Weapon of Mass Destruction
 
Input
  There are several test cases.
  The first line of a single test case contains two integer N and M ( 2 <= N <= 200; 1 <= M <= 20000), the number of cities and the number of highways. Cities are numbered from 1 to N.
  The second line contains two integer S,D ( 1 <= S,D <= N), the number of the source and the number of the destination.
  The following N lines contains costs. Of these lines the ith one contains exactly one integer, the cost of locating SA in the ith city to put it under observation. You may assume that the cost is positive and not exceeding 107.
  The followingM lines tells you about highway network. Each of these lines contains two integers A and B, indicating a bidirectional highway between A and B.
  Please process until EOF (End Of File).
 
Output
  For each test case you should output exactly one line, containing one integer, the sum of cost of your selected set.
  See samples for detailed information.
 
Sample Input
5 6
5 3
5
2
3
4
12
1 5
5 4
2 3
2 4
4 3
2 1
 
Sample Output
3
 
详细请参考:

题目大意:

N个点,每个点都有各自的cost, 然后M 无向条边

要求割去S点到D路线中的点,使之无法从S到D ,而且要求消耗的cost和最小.

这是一道网络流的题. 算的是最小割. 根据最大流最小割定理. 可以直接算最大流;

但是这题的的流量限制是在点上的.所以要我们来拆点.

我这题是把i 点的  点首和点尾 分别设为 i 和 i+n;  显然 最后会得到2*n个点

如图:

将点1拆分成两部分分别为点首1和点尾1+n,然后把点首到点尾的流量限制设成 题目要求的cost; ,点1---->(1+n)的花费即为封锁城市1的代价

而点与点之间(两座城市之间)的边,要设成正无穷大, 因为边不消耗cost;

然后从S的点首S 跑到 D的点尾 D+n  就可以计算出最小割了.

#include<stdio.h>
#include<algorithm>
#include<queue>
#include<string.h>
#define N 510
#define INF 0x3f3f3f3f
using namespace std; struct Edge
{
int u, v, flow, next;
} edge[N * N]; int layer[N], head[N], cnt; void Init()
{
memset(head, -, sizeof(head));
cnt = ;
} void AddEdge(int u, int v, int flow)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].flow = flow;
edge[cnt].next = head[u];
head[u] = cnt++; swap(u, v); edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].flow = ;
edge[cnt].next = head[u];
head[u] = cnt++; } bool BFS(int Start, int End)
{
queue<int>Q;
memset(layer, -, sizeof(layer));
Q.push(Start);
layer[Start] = ;
while(!Q.empty())
{
int u = Q.front();
Q.pop();
if(u == End)
return true;
for(int i = head[u] ; i != - ; i = edge[i].next)
{
int v = edge[i].v;
if(layer[v] == - && edge[i].flow > )
{
layer[v] = layer[u] + ;
Q.push(v);
}
}
}
return false;
} int DFS(int u, int Maxflow, int End)
{
if(u == End)
return Maxflow;
int uflow = ;
for(int i = head[u] ; i != - ; i = edge[i].next)
{
int v = edge[i].v;
if(layer[v] == layer[u] + && edge[i].flow > )
{
int flow = min(edge[i].flow, Maxflow - uflow);
flow = DFS(v, flow, End);
edge[i].flow -= flow;
edge[i^].flow += flow; uflow += flow;
if(uflow == Maxflow)
break;
}
}
if(uflow == )
layer[u] = ;
return uflow;
} int Dinic(int Start, int End)
{
int Maxflow = ;
while(BFS(Start, End))
Maxflow += DFS(Start, INF, End);
return Maxflow;
} int main()
{
int m, n, s, t;
while(~scanf("%d%d", &m, &n))
{
Init();
scanf("%d%d", &s, &t);
int u, v, flow;
for(int i = ; i <= m ; i++)
{
scanf("%d", &flow);
AddEdge(i, i + m, flow);
}
while(n--)
{
scanf("%d%d", &u, &v);
AddEdge(u + m, v, INF);
AddEdge(v + m, u, INF);
}
printf("%d\n", Dinic(s, t + m));
}
return ;
}

hdu 4289 Control(最小割 + 拆点)的更多相关文章

  1. HDU 4289 Control 最小割

    Control 题意:有一个犯罪集团要贩卖大规模杀伤武器,从s城运输到t城,现在你是一个特殊部门的长官,可以在城市中布置眼线,但是布施眼线需要花钱,现在问至少要花费多少能使得你及时阻止他们的运输. 题 ...

  2. hdu-4289.control(最小割 + 拆点)

    Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  3. HDU 4289 Control(最大流+拆点,最小割点)

    题意: 有一群恐怖分子要从起点st到en城市集合,你要在路程中的城市阻止他们,使得他们全部都被抓到(当然st城市,en城市也可以抓捕).在每一个城市抓捕都有一个花费,你要找到花费最少是多少. 题解: ...

  4. HDU 4289 Control (网络流,最大流)

    HDU 4289 Control (网络流,最大流) Description You, the head of Department of Security, recently received a ...

  5. HDU 4289 Control (最小割 拆点)

    Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  6. HDU4289 Control —— 最小割、最大流 、拆点

    题目链接:https://vjudge.net/problem/HDU-4289 Control Time Limit: 2000/1000 MS (Java/Others)    Memory Li ...

  7. hdu4289 Control --- 最小割,拆点

    给一个无向图.告知敌人的起点和终点.你要在图上某些点安排士兵.使得敌人不管从哪条路走都必须经过士兵. 每一个点安排士兵的花费不同,求最小花费. 分析: 题意可抽象为,求一些点,使得去掉这些点之后,图分 ...

  8. HDU(2485),最小割最大流

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2485 Destroying the bus stations Time Limit: 40 ...

  9. HDU 4971 (最小割)

    Problem A simple brute force problem (HDU 4971) 题目大意 有n个项目和m个问题,完成每个项目有对应收入,解决每个问题需要对应花费,给出每个项目需解决的问 ...

随机推荐

  1. 用AngularJS开发下一代Web应用 系列入门基础教程

    开篇介绍 AngularJS是什么东西?我觉得不用再描述了.可自行去充电一下.按照惯例,让我们先看看一个Hello World的开门简介吧. <!doctype html> <htm ...

  2. HDU 4023 (博弈 贪心 模拟) Game

    如果硬要说这算是博弈题目的话,那这个博弈是不公平博弈(partizan games),因为双方面对同一个局面做出来的决策是不一样的. 我们平时做的博弈都是公平博弈(impartial games),所 ...

  3. PHP无法加载MySQL模块

                在 将PHP根目录下libmysql.dll复制到c:\Windows\system32中 在Apache目录中的conf\httpd.conf 中加载libmysql.dll ...

  4. factory工厂模式

    工厂方法模式 工厂方法模式概述    工厂方法模式中抽象工厂类负责定义创建对象的接口,具体对象的创建工作由继承抽象工厂的具体类实现 简单理解: 与简单工厂模式类似,简单工厂模式是一个工厂,用户将条件为 ...

  5. NBUT 1121 Sakuya's Fly Knife 飞刀(暴力)

    题意:给出一个带有n*m个格子的矩阵,部分格子中有靶子target,现在要从一个没有靶子的格子中射出飞刀数把,飞刀是可穿透靶子的,同一直线上都可以一刀全射掉.现在问在哪个格子射出飞刀,可以在全部射中的 ...

  6. 【django】django学得好迷茫啊 来个学习规划吧

    http://www.zhihu.com/question/26235428

  7. ORACLE CONTROL FILE 笔记

    控制文件包含的信息:   1.数据库的名字   2.联机重做日志文件和数据文件的名字和位置   3.数据库创建的时间戳   4.当前日志的序列号   5.检查点信息   6.备份信息   TIP:数据 ...

  8. 剑指offer—第三章高质量的代码(按顺序打印从1到n位十进制数)

    题目:输入一个数字n,按照顺序打印出1到最大n位十进制数,比如输入3,则打印出1,2,3直到最大的3位数999为止. 本题陷阱:没有考虑到大数的问题. 本题解题思路:将要打印的数字,看成字符串,不足位 ...

  9. svn 安装与设置

    Subversion可以通过网络访问它的版本库,从而使用户可以在不同的电脑上使用.一定程度上可以说,允许用户在各自的地方修改同一份数据是促进协作. 运行Subversion服务器需要首先要建立一个版本 ...

  10. CURL: CURLE_COULDNT_CONNECT问题探究

    摘自::  存储系统研究: socket connect error 99(Cannot assign request address) 这是最近使用libcurl写http服务的压力测试的时候遇到的 ...