1002: [FJOI2007]轮状病毒

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 4381  Solved: 2393
[Submit][Status][Discuss]

Description

  轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的。一个N轮状基由圆环上N个不同的基原子
和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道。如下图所示

  N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不
同的3轮状病毒,如下图所示

  现给定n(N<=100),编程计算有多少个不同的n轮状病毒

Input

  第一行有1个正整数n

Output

  计算出的不同的n轮状病毒数输出

Sample Input

3

Sample Output

16
 
 
用基尔多夫矩阵推出一个递推式:f[i]=f[i-1]*3-f[i-2]+2  (我也不会证)
关于基尔多夫矩阵,传送门:http://www.cnblogs.com/chty/p/5868327.html
当然,得用到高精度。
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<algorithm>
using namespace std;
struct bignum{int len,num[];}f[],p;
int n;
bignum add(bignum a,bignum b)
{
int len; bignum c;
memset(c.num,,sizeof(c.num));
if(a.len>=b.len) len=a.len;
else len=b.len;
for(int i=;i<=len;i++)
{
c.num[i]+=a.num[i]+b.num[i];
if(c.num[i]>=)
{
c.num[i+]+=;
c.num[i]-=;
}
}
if(c.num[len]>)
len++;
c.len=len;
return c;
}
bignum Mull(bignum a,int b)
{
int i,len; bignum c;
len=a.len;
memset(c.num,,sizeof(c.num));
for(i=;i<=len;i++)
{
c.num[i]+=(a.num[i]*b);
if(c.num[i]>=)
{
c.num[i+]=c.num[i]/;
c.num[i]=c.num[i]%;
}
}
len=len+;
while(c.num[len]>)
{
c.num[len+]=c.num[len]/;
c.num[len++]%=;
}
c.len=--len;
return c;
}
bignum sub(bignum a1,bignum b1)
{
int len;
if(a1.len>b1.len) len=a1.len;
else len=b1.len;
for(int i=;i<=len;i++)
{
a1.num[i]=a1.num[i]-b1.num[i];
if(a1.num[i]<)
{
a1.num[i]+=;
a1.num[i+]--;
} }
while(a1.num[len]==&&len>) len--;
a1.len=len;
return a1;
} void print(bignum c)
{
for(int i=c.len;i>;i--)
printf("%d",c.num[i]);
printf("\n");
}
int main()
{
scanf("%d",&n);
f[].len=f[].len=p.len=;
f[].num[]=; f[].num[]=; p.num[]=;
for(int i=;i<=n;i++)
f[i]=sub(add(Mull(f[i-],),p),f[i-]);
print(f[n]);
return ;
}

【bzoj1002】[FJOI2007]轮状病毒的更多相关文章

  1. BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】

    BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...

  2. [bzoj1002][FJOI2007]轮状病毒_递推_高精度

    轮状病毒 bzoj-1002 FJOI-2007 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2 ...

  3. bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)

    1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...

  4. BZOJ1002[FJOI2007]轮状病毒

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

  5. [bzoj1002][FJOI2007 轮状病毒] (生成树计数+递推+高精度)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  6. [BZOJ1002] [FJOI2007] 轮状病毒 (数学)

    Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同的n轮状病毒数输出 Sample Inpu ...

  7. [luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】

    题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...

  8. bzoj1002: [FJOI2007]轮状病毒 生成树计数

    轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规 ...

  9. BZOJ1002:[FJOI2007]轮状病毒(找规律,递推)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

  10. [bzoj1002] [FJOI2007]轮状病毒轮状病毒(基尔霍夫矩阵)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

随机推荐

  1. 四、MongoDB的查询

    一.MongoDB的下载.安装与部署 二.MongoDB的基础知识简介 三.MongoDB的创建.更新和删除 db.blogs.insert([ { "author": " ...

  2. asp.net读取excel文件多种方法

    asp.net读取excel文件的三种方法示例,包括采用OleDB读取Excel文件.引用的com组件读取Excel文件.用文件流读取.   方法一:采用OleDB读取Excel文件 把Excel文件 ...

  3. centos6.7下网络设置

    vi /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE="eth0"BOOTPROTO="static"   # ...

  4. 10)Java Error and Exception

      1>异常继承类        Error类和Exception类都继续自Throwable类      Error表示系统级的错误情况,如内存错误这样程序无法通过自身的处理再继续执行下去的情 ...

  5. ASP.NET基础笔记

    MSDN:                                                                                                ...

  6. linux命令行下使用R语言绘图

    系统:centos 6.4 64bit 环境安装参考:http://hi.baidu.com/solohac/item/4a18e78f1bef9b5825ebd99c 在R语言中可以使用png()等 ...

  7. python中的lambda

    lambda表达式返回一个函数对象 例子: func = lambda x,y:x+y func相当于下面这个函数 def func(x,y): return x+y 注意def是语句而lambda是 ...

  8. [转]Ubuntu下配置NFS服务

    [转]Ubuntu下配置NFS服务  http://blog.163.com/liu8821031%40126/blog/static/111782570200921021253516/ Table ...

  9. linq里的select和selectmany操作

    Select() 和 SelectMany() 的工作都是依据源值生成一个或多个结果值.Select() 为每个源值生成一个结果值.因此,总体结果是一个与源集合具有相同元素数目的集合.与之相反,Sel ...

  10. android不要标题栏

    去除标题栏title其实非常简单,他有两种方法,一种是在代码中添加,另一种是在AndroidManifest.xml中添加: 1.在代码中实现: 在此方法setContentView(R.layout ...