[HDU6155]Subsequence Count
题目大意:
给定一个01序列,支持以下两种操作:
1.区间反转;
2.区间求不同的子序列数量。
思路:
首先我们考虑区间反转,这是一个经典的线段树操作。
接下来考虑求不同的子序列数量,在已知当前区间的情况下,我们有如下$O(n)$的动态规划:|
$f_{i,0}=f_{i-1,0}+f_{i-1,1}+1,f_{i,1}=f_{i-1,1}//第i位为0$
$f_{i,1}=f_{i-1,0}+f_{i-1,1}+1,f_{i,0}=f_{i-1,0}//第i位为1$
这样的动态规划显然无法直接用线段树维护,而如果不能直接用线段树维护,上面维护的区间反转也就失去了意义。
为了使用线段树维护这种动态规划,我们需要用矩阵表示这种递推关系。
$\left(\begin{array}{}f_{i+1,0}\\f_{i+1,1}\\1\end{array}\right)=\left(\begin{array}{}f_{i-1,0}\\f_{i-1,1}\\1\end{array}\right)\times\left(\begin{array}{}1&0&0\\1&1&0\\1&0&1\end{array}\right)$
$\left(\begin{array}{}f_{i+1,0}\\f_{i+1,1}\\1\end{array}\right)=\left(\begin{array}{}f_{i-1,0}\\f_{i-1,1}\\1\end{array}\right)\times\left(\begin{array}{}1&1&0\\0&1&0\\0&1&1\end{array}\right)$
这样我们就可以保存每个区间的乘积,询问时直接相乘即可。
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
char ch;
while(!isdigit(ch=getchar()));
int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
inline int getdigit() {
char ch;
while(!isdigit(ch=getchar()));
return ch^'';
}
const int N=,mod=1e9+;
template<int SIZE>
struct Matrix {
int val[SIZE][SIZE];
Matrix operator * (const Matrix &another) const {
Matrix ret;
for(int i=;i<SIZE;i++) {
for(int j=;j<SIZE;j++) {
ret.val[i][j]=;
for(int k=;k<SIZE;k++) {
ret.val[i][j]+=(long long)val[i][k]*another.val[k][j]%mod;
ret.val[i][j]%=mod;
}
}
}
return ret;
}
void operator *= (const Matrix &another) {
*this=*this*another;
}
void flip() {
std::swap(val[][],val[][]);
std::swap(val[][],val[][]);
std::swap(val[][],val[][]);
std::swap(val[][],val[][]);
}
int calc() {
return (val[][]+val[][])%mod;
}
};
const Matrix<> m[]={
{,,,
,,,
,,},
{,,,
,,,
,,}
};
const Matrix<> E={
,,,
,,,
,,
};
class SegmentTree {
private:
#define _left <<1
#define _right <<1|1
Matrix<> val[N<<];
bool tag[N<<];
void push_up(const int p) {
val[p]=val[p _left]*val[p _right];
}
void push_down(const int p) {
if(!tag[p]) return;
val[p _left].flip();
val[p _right].flip();
tag[p _left]^=true;
tag[p _right]^=true;
tag[p]=false;
}
public:
void build(const int p,const int b,const int e) {
tag[p]=false;
if(b==e) {
val[p]=m[getdigit()];
return;
}
int mid=(b+e)>>;
build(p _left,b,mid);
build(p _right,mid+,e);
push_up(p);
}
void modify(const int p,const int b,const int e,const int l,const int r) {
if(b==l&&e==r) {
val[p].flip();
tag[p]^=true;
return;
}
push_down(p);
int mid=(b+e)>>;
if(l<=mid) modify(p _left,b,mid,l,std::min(mid,r));
if(r>mid) modify(p _right,mid+,e,std::max(mid+,l),r);
push_up(p);
}
Matrix<> query(const int p,const int b,const int e,const int l,const int r) {
if(b==l&&e==r) {
return val[p];
}
push_down(p);
int mid=(b+e)>>;
Matrix<> ret=E;
if(l<=mid) ret*=query(p _left,b,mid,l,std::min(mid,r));
if(r>mid) ret*=query(p _right,mid+,e,std::max(mid+,l),r);
return ret;
}
};
SegmentTree t;
int main() {
for(int T=getint();T;T--) {
int n=getint(),q=getint();
t.build(,,n);
while(q--) {
int op=getint(),l=getint(),r=getint();
switch(op) {
case : {
t.modify(,,n,l,r);
break;
}
case : {
printf("%d\n",t.query(,,n,l,r).calc());
break;
}
}
}
}
return ;
}
[HDU6155]Subsequence Count的更多相关文章
- [HDU6155]Subsequence Count(线段树+矩阵)
DP式很容易得到,发现是线性递推形式,于是可以矩阵加速.又由于是区间形式,所以用线段树维护. https://www.cnblogs.com/Miracevin/p/9124511.html 关键在于 ...
- HDU 6155 Subsequence Count 线段树维护矩阵
Subsequence Count Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 256000/256000 K (Java/Oth ...
- 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/73982 ...
- Subsequence Count (线段树)
Time Limit: 1000 ms Memory Limit: 256 MB Description 给定一个01串 $S_{1 \cdots n}$ 和 $Q$ 个操作. 操作有两种类型: ...
- HDU.6155.Subsequence Count(线段树 矩阵)
题目链接 首先考虑询问[1,n]怎么做 设 f[i][0/1]表示[1,i]以0/1结尾的不同子序列个数 则 \(if(A[i]) f[i][1] = f[i-1][0] + f[i-1][1] + ...
- HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)
题意 给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作--操作分两种翻转 \([l,r]\) 区间中的元素.求区间 \([l,r]\) 有多少个不同的子序列. \(1 \le ...
- Subsequence Count 2017ccpc网络赛 1006 dp+线段树维护矩阵
Problem Description Given a binary string S[1,...,N] (i.e. a sequence of 0's and 1's), and Q queries ...
- [Contest20171006]Subsequence Count
给定一个01串$S_{1\cdots n}$和$Q$个操作.操作有两种类型:1.将$[l,r]$区间的数取反(将其中的$0$变成$1$,$1$变成$0$).2.询问字符串$S$的子串$S_{l\cdo ...
- hdu 6155 - Subsequence Count
话说这题比赛时候过的好少,连题都没读TOT 先考虑dp求01串的不同子序列的个数. dp[i][j]表示用前i个字符组成的以j为结尾的01串个数. 如果第i个字符为0,则dp[i][0] = dp[i ...
随机推荐
- 【codeforces】【比赛题解】#849 CF Round #431 (Div.2)
cf的比赛越来越有难度了……至少我做起来是这样. 先看看题目吧:点我. 这次比赛是北京时间21:35开始的,算是比较良心. [A]奇数与结束 "奇数从哪里开始,又在哪里结束?梦想从何处起航, ...
- 83.Linux之ubuntu-14.04.4-desktop-amd64安装
QQ(1044233591) 一.软件下载 二.安装 1.上一节已经安装好了VMware10.0.4软件,双击桌面VMware Workstation软件图标,出现VMware软件界面,点击" ...
- 内核定时器的使用(好几个例子add_timer)【转】
转自:http://blog.csdn.net/jidonghui/article/details/7449546 LINUX内核定时器是内核用来控制在未来某个时间点(基于jiffies)调度执行某个 ...
- MySQL GTID你知多少【转】
MySQL在5.6的版本推出了GTID复制,相比传统的复制,GTID复制对于运维更加友好,这个事务是谁产⽣,产⽣多少事务,⾮常直接的标识出来,当然GTID也有限制,对于什么是GTID可以参考我之前的文 ...
- Docker Compose practice
Docker Compose 什么是 Docker-Compose? Compose 可以让用户在集群中部署分布式应用.简单的说,Docker Compose 属于一个"应用层"的 ...
- Python基础:内置常量
本文根据Python 3.6.5的官文Built-in Constants编写,官文比较短,大家可以直接看原文. 有一些存在于 内置名称空间(the built-in namespace) 的常量,如 ...
- opencv(1)图像处理
2.图像操作 图片裁剪 裁剪是利用array自身的下标截取实现 HSV空间 除了区域,图像本身的属性操作也非常多,比如可以通过HSV空间对色调和明暗进行调节.HSV空间是由美国的图形学专家A. R. ...
- KAFKA随机产生JMX 端口指定的问题
https://blog.csdn.net/weixin_40209426/article/details/82217987
- 丑数(UVa136)
题目具体描述见:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=835&a ...
- jquery中获取radio选中值的正确写法
错误写法: //只在IE下有作用,其他浏览器均获取的为第一个单选框的值 $('input[type=radio]').val(); 正确写法为: //兼容所有浏览器写法 $('input[type=r ...