http://www.lydsy.com/JudgeOnline/problem.php?id=1019

题目中问步骤数,没说最少

可以大胆猜测移动方案唯一

(真的是唯一但不会证)

设f[i][j] 表示 从i号柱子 上把j个盘子移到 g[i][j] 柱子上的步数

初始化:f[0][1]=1,g[0][1] 根据优先级决定

设三根柱子分别为0,1,2

对于每一个f[x][i],

把前i-1个移走,把第i个移走,把前i-1个移回

令y=g[x][i-1],则k=0+1+2-x-y

我们希望 把i-1个移到y上,第i个移到k上,再把i-1个移到k上

但是g[y][i-1]可能不是移到k上

所以对g[y][i-1]进行分类讨论

若g[y][i-1]=k,那么移过去就完成了,此时f[x][i]=f[x][i-1]+1+f[y][i-1]

若g[y][i-1]=x,那么把i-1个移到y上后,把第i个移到k上,

再把 y上的i-1个移到x上,再把k上的第i个移到y上,最后把x上的i-1个移到y上

所以f[x][i]=f[x][i-1]+1+f[y][i-1]+1+f[x][i-1]

#include<cstdio>
#include<iostream> using namespace std; #define N 31 long long f[][N],g[][N]; char c[]; bool vis[]; int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=;++i)
{
scanf("%s,",c);
if(!vis[c[]-'A']) vis[c[]-'A']=true,g[c[]-'A'][]=c[]-'A';
}
f[][]=f[][]=f[][]=;
int y,k;
for(int i=;i<=n;++i)
for(int x=;x<;++x)
{
y=g[x][i-],k=-x-y;
if(g[y][i-]==k) g[x][i]=k,f[x][i]=f[x][i-]++f[y][i-];
else g[x][i]=y,f[x][i]=f[x][i-]++f[y][i-]++f[x][i-];
}
cout<<f[][n];
}

1019: [SHOI2008]汉诺塔

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 1832  Solved: 1125
[Submit][Status][Discuss]

Description

  汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成。一开始n个盘子都摞在柱子A上,
大的在下面,小的在上面,形成了一个塔状的锥形体。

  对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移
动的盘子一定放在比它更大的盘子上面(如果移动到空柱子上就不需要满足这个要求)。我们可以用两个字母来描
述一次操作:第一个字母代表起始柱子,第二个字母代表目标柱子。例如,AB就是把柱子A最上面的那个盘子移到
柱子B。汉诺塔的游戏目标是将所有的盘子从柱子A移动到柱子B或柱子C上面。有一种非常简洁而经典的策略可以帮
助我们完成这个游戏。首先,在任何操作执行之前,我们以任意的次序为六种操作(AB、AC、BA、BC、CA和CB)
赋予不同的优先级,然后,我们总是选择符合以下两个条件的操作来移动盘子,直到所有的盘子都从柱子A移动到
另一根柱子:(1)这种操作是所有合法操作中优先级最高的;(2)这种操作所要移动的盘子不是上一次操作所移
动的那个盘子。可以证明,上述策略一定能完成汉诺塔游戏。现在你的任务就是假设给定了每种操作的优先级,计
算按照上述策略操作汉诺塔移动所需要的步骤数。

Input

  输入有两行。第一行为一个整数n(1≤n≤30),代表盘子的个数。第二行是一串大写的ABC字符,代表六种操
作的优先级,靠前的操作具有较高的优先级。每种操作都由一个空格隔开。

Output

  只需输出一个数,这个数表示移动的次数。我们保证答案不会超过10的18次方。

Sample Input

3
AB BC CA BA CB AC

Sample Output

7

bzoj千题计划109:bzoj1019: [SHOI2008]汉诺塔的更多相关文章

  1. bzoj1019: [SHOI2008]汉诺塔(动态规划)

    1019: [SHOI2008]汉诺塔 题目:传送门 简要题意: 和经典的汉诺塔问题区别不大,但是题目规定了一个移动时的优先级: 如果当前要从A柱子移动,但是A到C的优先级比A到B的优先级大的话,那就 ...

  2. bzoj1019 [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1030  Solved: 638[Submit][Status] ...

  3. [bzoj1019][SHOI2008]汉诺塔 (动态规划)

    Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. 对汉诺塔的一次合法的操 ...

  4. 【BZOJ1019】[SHOI2008]汉诺塔(数论,搜索)

    [BZOJ1019][SHOI2008]汉诺塔(数论,搜索) 题面 BZOJ 洛谷 题解 首先汉诺塔问题的递推式我们大力猜想一下一定会是形如\(f_i=kf_{i-1}+b\)的形式. 这个鬼玩意不好 ...

  5. BZOJ1019 汉诺塔/洛谷P4285 [SHOI2008]汉诺塔

    汉诺塔(BZOJ) P4285 [SHOI2008]汉诺塔 居然是省选题,还是DP!(我的DP菜得要死,碰见就丢分) 冥思苦想了1h+ \(\to\) ?! 就是普通的hanoi NOI or HNO ...

  6. BZOJ 1019: [SHOI2008]汉诺塔( dp )

    dp(x, y)表示第x根柱子上y个盘子移开后到哪根柱子以及花费步数..然后根据汉诺塔原理去转移... ------------------------------------------------ ...

  7. bzoj1019 / P4285 [SHOI2008]汉诺塔

    P4285 [SHOI2008]汉诺塔 递推 题目给出了优先级,那么走法是唯一的. 我们用$0,1,2$代表$A,B,C$三个柱子 设$g[i][x]$为第$x$根柱子上的$i$个盘子,经过演变后最终 ...

  8. 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)

    1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...

  9. 【bzoj1019】[SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1427  Solved: 872[Submit][Status] ...

随机推荐

  1. 使用Git进行代码管理心得------------个人练习

    一.在github.com上的操作   今天我们实践课程学习了用Git进行代码版本,使用github进行代码托管,我和队友在官网上创建了自己的Organization,将Auto CS fork到了小 ...

  2. 灵悟礼品网上专卖店——第三阶段Sprint

    一.小组成员: 洪雪意(产品负责人) 陈淑筠(Master) 二.组内人员任务情况 已完成的任务: 陈淑筠:主页面的设计 洪雪意:导航条的改进和页面中插入页面的功能 正在进行的任务: 陈淑筠:主页面的 ...

  3. CS学习

    作者:匿名用户链接:https://www.zhihu.com/question/27368268/answer/36464143来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  4. C#简单窗体应用程序(一)

    使用C#创建控制台应用程序的基本步骤: (1)创建项目: (2)用户界面设计: (3)属性设置: (4)编写程序代码: (5)保存.调试.运行: 例题:创建一个Windows窗体应用程序,在窗体中添加 ...

  5. 信安实践——CSRF攻击与防御

    1.实验原理 CSRF(Cross-Site Request Forgery,跨站点伪造请求)是一种网络攻击方式,该攻击可以在受害者毫不知情的情况下以受害者名义伪造请求发送给受攻击站点,从而在未授权的 ...

  6. Java join & yield

    Thread.yield()方法作用是:暂停当前正在执行的线程对象,并执行其他线程. yield()应该做的是让当前运行线程回到可运行状态,以允许具有相同优先级的其他线程获得运行机会.因此,使用yie ...

  7. 高可用集群(crmsh详解)http://www.it165.net/admin/html/201404/2869.html

    crmsh是pacemaker的命令行接口工具,执行help命令,可以查看shell接口所有的一级命令和二级命令,使用cd 可以切换到二级子命令的目录中去,可以执行二级子命令 在集群中的资源有四类:p ...

  8. Excel中用REPT函数制作图表

    本文从以下七个方面,阐述在Excel中用REPT函数制作图表: 一. 图形效果展示 二. REPT语法解释 三. REPT制作条形图 四. REPT制作漏斗图 五. REPT制作蝴蝶图 六. REPT ...

  9. 一文总结之MyBatis

    目录 MyBatis 目标 MyBatis演示 Configuration.xml 映射文件 初始化配置文件 Dao Spring与MyBatis集成 pom Spring配置文件 MyBatis配置 ...

  10. Mxnet Windows配置

    MXNET Windows 编译安装(Python) 本文只记录Mxnet在windows下的编译安装,更多环境配置请移步官方文档:http://mxnet.readthedocs.io/en/lat ...