[luogu 3175] [HAOI2015]按位或

题面

刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2n-1]的数字,与你手上的数字进行按位或运算。问期望多少秒后,你手上的数字变成2n-1。

分析

前置知识:min-max容斥

记\(\max(S)\)为集合\(S\)中的最大值,\(\min(S)\)为集合\(S\)中的最小值(如果\(S=\emptyset\)

,那\(\max(S)=\min(S)=0\)),那么有

\[\max(S)=\sum _{T\subseteq S}\left( -1\right) ^{|T|-1} \min(T)
\]

这里感性理解一下就好了

前置知识:高维前缀和

戳这里


把二进制数看成一个集合,第i位为1表示集合里有元素i.设全集\(U\)为二进制数\(2^n-1\)对应的集合

设\(\max(S)\)为S中最后一个元素被或为1的期望时间,min就是最先被或为1的元素的期望时间,那么答案就是\(\max(U)\)

根据min-max容斥,我们有

\[\max(S)=\sum_{T \subseteq S} (-1)^{|T|-1} \min(T)
\]

因为是最先被或为1,根据定义我们有

\[\min(T)=\frac{1}{\sum_{X \subseteq U , X \cap T \neq \emptyset }p(x)}
\]

那么

\[\begin{aligned} \min(T) &= \frac{1}{\sum_{X \subseteq U , X \cap T \neq \emptyset }p(x)} \\ &=\frac{1}{1-\sum_{X \subseteq U,X \cap T = \emptyset} p(x)} \\&= \frac{1}{1-\sum_{X \subseteq U-T} p(x)}\end{aligned}
\]

其实就是用了2次补集转化,然后\(\sum_{X \subseteq U-T} p(x)\)显然就是一个高维前缀和,直接套模板就可以了

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define maxn 20
#define eps 1e-10
using namespace std;
int n;
double p[(1<<maxn)+5]; int count_1(int x){
int ans=0;
while(x){
if(x&1) ans++;
x>>=1;
}
return ans;
} int main(){
scanf("%d",&n);
for(int i=0;i<(1<<n);i++) scanf("%lf",&p[i]);
for(int i=0;i<n;i++){
for(int j=0;j<(1<<n);j++){
if(j&(1<<i)) p[j]+=p[j^(1<<i)];
}
}
double ans=0;
int all=(1<<n)-1;
for(int i=1;i<=all;i++){
if(fabs(1-p[all^i])<eps) continue;//防止除0错误
ans+=pow(-1,count_1(i)-1)*1/(1-p[all^i]);
}
if(fabs(ans)<eps) printf("INF");
else printf("%.10lf",ans);
}

[luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)的更多相关文章

  1. BZOJ4036:按位或 (min_max容斥&高维前缀和)

    Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...

  2. [HAOI2015]按位或(min-max容斥,FWT,FMT)

    题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...

  3. luoguP3175 [HAOI2015]按位或 min-max容斥 + 高维前缀和

    考虑min-max容斥 \(E[max(S)] = \sum \limits_{T \subset S} min(T)\) \(min(T)\)是可以被表示出来 即所有与\(T\)有交集的数的概率的和 ...

  4. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  5. bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】

    其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...

  6. Codeforces.449D.Jzzhu and Numbers(容斥 高维前缀和)

    题目链接 \(Description\) 给定\(n\)个正整数\(a_i\).求有多少个子序列\(a_{i_1},a_{i_2},...,a_{i_k}\),满足\(a_{i_1},a_{i_2}, ...

  7. 【BZOJ4036】按位或(Min-Max容斥,FWT)

    [BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...

  8. [Hdu-6053] TrickGCD[容斥,前缀和]

    Online Judge:Hdu6053 Label:容斥,前缀和 题面: 题目描述 给你一个长度为\(N\)的序列A,现在让你构造一个长度同样为\(N\)的序列B,并满足如下条件,问有多少种方案数? ...

  9. luogu P3175 [HAOI2015]按位或

    传送门 如果每个位置上的数字的意义是这个位置被加进集合的最早时间,那么我们要求的就是集合中最大数的期望,使用Min-Max容斥,\(E(max(S))=\sum_{T\subset S}(-1)^{| ...

随机推荐

  1. Postman(一)、断言

    postman常见断言方法介绍: 1.Clear a global variable (清除一个全局变量)  postman.clearGlobalVariable("variable_ke ...

  2. Mysql cluster管理节点配置文件详解

    一.定义MySQL Cluster的TCP/IP连接TCP/IP是MySQL集群用于建立连接的默认传输协议,正常情况下不需要定义连接.可使用“[TCP DEFAULT]”或“[TCP]”进行定义. 1 ...

  3. echarts之bootstrap选项卡不能显示其他标签echarts图表

    在echarts跟bootstrap选项卡整合的时候,默认第一个选中选项卡可以正常加载echarts图表,但是切换其他选项的时候不能渲染出其他选项卡echarts图表. 解决方法: 在js中添加代码: ...

  4. SQL 表 数据备份

    insert into SMTTemporarySave select * from [MSV0CIMDB].[PICS_20170706].dbo.SMTTemporarySave

  5. nodejs 中的 cookie 及 session

    cookie-parser 插件:cookie解析,加密的操作 cookie-session 插件:session 的解析操作 http 是无状态的 cookie:在浏览器保存一些数据,每次向服务器发 ...

  6. 跨IDC ycache原理和配置说明

    总体介绍:   多idc缓存方案的invalid方案(如下图),是通过两个操作保证多个idc之间的缓存的高可用性和最终一致性的. 更新数据库后,发送invalid消息:invalid消息广播到其他id ...

  7. 字面常量 kotlin(2)

    字面常量数值常量字面值有以下几种:十进制: 123Long 类型用大写 L 标记: 123L十六进制: 0x0F二进制: 0b00001011注意: 不支持八进制Kotlin 同样支持浮点数的常规表示 ...

  8. mysql5.7.25搭建mysql-5.7.25.tar.gz包(亲验)

    STEP 1. 下载 去往官方下载MySQL包.http://dev.mysql.com mysql-5.7.25-linux-glibc2.12-x86_64.tar.gz STEP 2. 解压缩 ...

  9. java导入导出下载Excel,xls文件(带下拉框)

    /** * 导入excel文件 * 2014-7-23 * @return */ @RequiresPermissions("plug:product:caiwu:upload") ...

  10. python生成密码字典

    import itertools as its words = 'abcdefghijklmnopqrstuvwxyz1234567890' r = its.product(words, repeat ...