题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1005

分析:

首先prufer数列:http://baike.baidu.com/view/10474884.htm?fr=aladdin

从百度百科中我们可以弄出prufer数列的几个性质:

1、prufer数列与节点编号1~n的无根树一一对应

2、prufer数列的长度为n-2

3、prufer数列中每个数出现次数==这个数对应的节点在无根树中的度数-1(注意叶节点肯定不在prufer数列中的)

由性质1我们可以将问题转化成求prufer数列的个数,而对度数的要求也由性质3可以转换成堆prufer中数字出现个数的要求,这就转换成了基础的高中排列组合题了。换言之,让你从1~n中挑出n-2个数(可以重复也可以不挑)组成一个数列,一些数字的出现个数固定,一些数字的出现个数随意,问数列的种数。

按高中排列组合的思想,先考虑“捆绑”的,即出现个数固定的数字。设读入的度数分别为d1,d2,d3,……,dm,

则个数为C(n-2,d1-1)*C(n-2-(d1-1),d2-1)*…… 化简一下就可以得到:

然后考虑那些剩下的,则为:

然后结果就是两个相乘,计算的时候分解质因数就行

[bzoj 1005][HNOI 2008]明明的烦恼(prufer数列+排列组合)的更多相关文章

  1. BZOJ 1005 [HNOI2008]明明的烦恼 ★(Prufer数列)

    题意 N个点,有些点有度数限制,问这些点可以构成几棵不同的树. 思路 [Prufer数列] Prufer数列是无根树的一种数列.在组合数学中,Prufer数列是由一个对于顶点标过号的树转化来的数列,点 ...

  2. [BZOJ1005](HNOI 2008)明明的烦恼

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 ...

  3. 【BZOJ 1005】[HNOI2008]明明的烦恼(暴力化简法)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 [题意] 中文题 [题解] 一棵节点上标有序号的树会和一个prufer数列唯一对 ...

  4. [BZOJ1005]Prufer数列+排列组合

    一棵树的Prufer数列 每次在剩下的树中找到标号最小的叶子节点(对于无根树而言即是度数为1的节点),删去. 同时将其父节点(即与其相连的唯一点)加入Prufer数列当中. 一个Prufer数列所对应 ...

  5. 【BZOJ 1005】[HNOI2008]明明的烦恼

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 ...

  6. 【BZOJ 1005】[HNOI2008]明明的烦恼(化简的另一种方法)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 [题意] [题解] 题目和题解在上一篇; 这里 对 [(m^(n-2-tot)) ...

  7. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  8. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  9. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

随机推荐

  1. [Qt Creator 快速入门] 第9章 国际化、帮助系统和Qt插件

    一.国际化 国际化的英文表述为Internationalization,通常简写为I18N(首尾字母加中间的字符数),一个应用程序的国际化就是使该应用程序可以让其他国家的用户使用的过程. Qt支持现在 ...

  2. 300 Longest Increasing Subsequence 最长上升子序列

    给出一个无序的整形数组,找到最长上升子序列的长度.例如,给出 [10, 9, 2, 5, 3, 7, 101, 18],最长的上升子序列是 [2, 3, 7, 101],因此它的长度是4.因为可能会有 ...

  3. 简单的win7-cmd命令提示符

    在win7打开cmd窗口 有两个路径:(1)开始 -->所有程序 --> 附件 --> 命令提示 (2)开始 -->在搜索框输入 “cmd”   指令 作用 对文件夹的操作   ...

  4. SQL Split函数,将一串字符串返回成table

    写法一: CREATE FUNCTION [dbo].[Split] ( @str VARCHAR(MAX), --传进来的字符串 ) --分割符 ) RETURNS @t TABLE --定义一个虚 ...

  5. Js onmouseover和onmouseout小特效

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...

  6. bootstrap3无间距栅格/grid no-gutter

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  7. 联想 Vibe Shot(Z90-3) 免recovery 获取ROOT权限 救砖 VIBEUI V3.1_1625

    >>>重点介绍<<< 第一:本刷机包可卡刷可线刷,刷机包比较大的原因是采用同时兼容卡刷和线刷的格式,所以比较大第二:[卡刷方法]卡刷不要解压刷机包,直接传入手机后用 ...

  8. Jmeter的属性和变量

    jmeter的属性和变量可以简单理解为编程里面的全局变量和局部变量.属性是全局可见,可以跨线程组传递调用,而变量基本上只能存在于一个线程组中(在测试计划定义的变量也是可以跨线程组传递的).同线程组内的 ...

  9. day20-面向对象基础

    目录 面向对象基础 面向过程编程与面向对象编程 面向过程编程 面向对象编程 类与对象 类 对象 定义类和对象 定制对象独有特征 对象属性查找顺序 类与对象的绑定方法 类与数据类型 对象的高度整合 面向 ...

  10. Flask框架 之abort、自定义错误、视图函数返回值与jsonify

    一.abort函数 使用abort函数可以立即终止视图函数的执行,并可以返回给前端特定的值. abort函数的作用: 1.传递状态码,必须是标准的http状态码 2.传递响应体信息 @app.rout ...