HDU - 3631 Shortest Path(Floyd最短路)
Time Limit: 1000MS | Memory Limit: 32768KB | 64bit IO Format: %I64d & %I64u |
Description
There is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:
(1) Mark a vertex in the graph.
(2) Find the shortest-path between two vertices only through marked vertices.
For it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets
problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.
Could you also solve the shortest-path problem?
Input
and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y),
and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There
is a blank line between two consecutive test cases.
End of input is indicated by a line containing N = M = Q = 0.
Output
For operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.
For operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.
There is a blank line between two consecutive test cases.
Sample Input
5 10 10
1 2 6335
0 4 5725
3 3 6963
4 0 8146
1 2 9962
1 0 1943
2 1 2392
4 2 154
2 2 7422
1 3 9896
0 1
0 3
0 2
0 4
0 4
0 1
1 3 3
1 1 1
0 3
0 4
0 0 0
Sample Output
Case 1:
ERROR! At point 4
ERROR! At point 1
0
0
ERROR! At point 3
ERROR! At point 4
Source
题意:有向图,有重边。选中一些点。在这些点里面求两点的最短路。有2个操作,操作 "0" 表示标记 x 选中,假设x之前已经被选中。输出 "ERROR! At point x"。操作 "1" 表示求 x ->y 的最短路。假设x或y不在选中的点里面。输出 "ERROR! At path x to y"。假设有不存在则输出 "No such path"。
思路:初始化 vis 数组为-1,表示所有未被选中。之后标记 vis[x] 为0表示 x 被选中。更新Floyd。把 x 点作为中间点更新最短路数组。
<span style="font-size:18px;">#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std; #define ll long long
const ll INF = 1<<30;
const double PI = acos(-1.0);
const double e = 2.718281828459;
const double eps = 1e-8;
int n, m, t;
const int MAXN = 310;
ll g[MAXN][MAXN];
int vis[MAXN]; void Floyd(int k)
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if(g[i][j] > g[i][k]+g[k][j])
g[i][j] = g[i][k]+g[k][j];
}
}
} int main()
{
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int num = 1;
while(cin>>n>>m>>t)
{
if(!n && !m && !t)
break;
memset(vis, -1, sizeof(vis));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
g[i][j] = (i==j)?0:INF;
}
}
//cout<<g[4][5]<<endl;
int p, q, x, y;
ll w;
for(int i = 1; i <= m; i++)
{
scanf("%d %d %I64d", &p, &q, &w);
if(g[p][q] > w)
g[p][q] = w;
}
if(num != 1)
printf("\n");
printf("Case %d:\n", num++);
while(t--)
{
scanf("%d", &q);
if(q == 0)
{
scanf("%d", &x);
if(vis[x] == 0)
printf("ERROR! At point %d\n", x);
else
{
vis[x] = 0;
Floyd(x);
}
}
else
{
scanf("%d %d", &x, &y);
if(vis[x]==-1 || vis[y]==-1)
printf("ERROR! At path %d to %d\n", x, y);
else
{
if(g[x][y] != INF)
printf("%I64d\n", g[x][y]);
else
printf("No such path\n");
}
}
}
}
return 0;
} </span>
HDU - 3631 Shortest Path(Floyd最短路)的更多相关文章
- hdu 3631 Shortest Path(Floyd)
题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...
- hdu 3631 Shortest Path
floyd算法好像很奇妙的样子.可以做到每次加入一个点再以这个点为中间点去更新最短路,效率是n*n. #include<cstdio> #include<cstring> #i ...
- HDU 5636 Shortest Path 暴力
Shortest Path 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5636 Description There is a path graph ...
- ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]
人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...
- HDU 5636 Shortest Path
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5636 题解: 1.暴力枚举: #include<cmath> #include<c ...
- HDU 5636 Shortest Path(Floyed,枚举)
Shortest Path Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Tot ...
- HDU - 4725_The Shortest Path in Nya Graph
The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- HDU 5636 Shortest Path(Floyd)
题目链接 HDU5636 n个点,其中编号相邻的两个点之间都有一条长度为1的边,然后除此之外还有3条长度为1的边. m个询问,每次询问求两个点之前的最短路. 我们把这三条边的6个点两两算最短路, 然 ...
- HDU 4479 Shortest path 带限制最短路
题意:给定一个图,求从1到N的递增边权的最短路. 解法:类似于bellman-ford思想,将所有的边先按照权值排一个序,然后依次将边加入进去更新,每条边只更新一次,为了保证得到的路径是边权递增的,每 ...
随机推荐
- Flask框架 之request对象
一.request对象属性 属性 说明 类型 data 记录请求的数据,并转换为字符串 * form 记录请求中的表单数据 MultiDict args 记录请求中的查询参数 MultiDict co ...
- v-bind、v-on、计算属性
v-bind 缩写 <!-- 完整语法 --> <a v-bind:href="url">...</a> <!-- 缩写 --> & ...
- java的标识符和关键词
1.1.1 标识符 可以简单的理解为一个名字.在Java中,我们需要标识代码的很多元素,包括类名.方法.字段.变量.包名等.我们选择的名称就称为标识符,并且遵循以下规则: 标识符可以由字母.数字. ...
- 100 道 Linux 笔试题,能拿 80 分就算大神!
本套笔试题共100题,每题1分,共100分.(参考答案在文章末尾) 1. cron 后台常驻程序 (daemon) 用于: A. 负责文件在网络中的共享 B. 管理打印子系统C. 跟踪管理系统信息和错 ...
- HDU6189 Law of Commutation (数论)
题意:输入n和a 定义m等于2的n次方 求1-m有多少数使得 a^b = b^a (mod m) 题解:先打表找规律 发现a为奇数的答案只有b = a这一种 (不知道为什么也不想知道为什么 当a为偶数 ...
- jquery onclick 问题
var str = ''; for(var i = 0;i<data.list.length;i++){ str += "<tr><td>" + (i ...
- 洛谷——P1972 [SDOI2009]HH的项链(线段树)
P1972 [SDOI2009]HH的项链 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断地收集新的 ...
- UVA - 514 Rails(栈模拟)
题目: 给出一个序列,问将1,2,3,4……按从小到大的顺序入栈,能否得到给出的序列. 思路: 用stack模拟就可以了. 当前的cnt如果小于a[i],就将cnt入栈,否则就判断栈顶是不是和a[i] ...
- ubuntu jdk和tomcat配置
先查看linux的版通过file /sbin/init命令,下载对应版本的jdk. 我的ubuntu是64位的(桌面系统),所以下载的是jdk-7u71-linux-x64.tar.gz 在home的 ...
- 第十节:Web爬虫之数据存储与MySQL8.0数据库安装和数据插入
用解析器解析出数据之后,接下来就是存储数据了,保存的形式可以多种多样,最简单的形式是直接保存为文本文件,如 TXT.JSON.csv 另外,还可以保存到数据库中,如关系型数据库MySQL ,非关系型数 ...