Time Limit: 1000MS
Memory Limit: 32768KB
64bit IO Format: %I64d & %I64u

SubmitStatus

Description

When YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in Informatics) in GD team. One day, GD team’s coach, Prof. GUO asked them to solve the following shortest-path problem.

There is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:

(1) Mark a vertex in the graph.

(2) Find the shortest-path between two vertices only through marked vertices.

For it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets
problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.

Could you also solve the shortest-path problem?

 

Input

The input consists of multiple test cases. For each test case, the first line contains three integers N, M and Q, where N is the number of vertices in the given graph, N≤300; M is the number of arcs, M≤100000;
and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y),
and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There
is a blank line between two consecutive test cases.

End of input is indicated by a line containing N = M = Q = 0.
 

Output

Start each test case with "Case #:" on a single line, where # is the case number starting from 1.

For operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.

For operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.

There is a blank line between two consecutive test cases.
 

Sample Input

5 10 10
1 2 6335
0 4 5725
3 3 6963
4 0 8146
1 2 9962
1 0 1943
2 1 2392
4 2 154
2 2 7422
1 3 9896
0 1
0 3
0 2
0 4
0 4
0 1
1 3 3
1 1 1
0 3
0 4
0 0 0
 

Sample Output

Case 1:
ERROR! At point 4
ERROR! At point 1
0
0
ERROR! At point 3
ERROR! At point 4
 

Source

2010 Asia Regional Tianjin Site ―― Online Contest



题意:有向图,有重边。选中一些点。在这些点里面求两点的最短路。有2个操作,操作 "0" 表示标记 x 选中,假设x之前已经被选中。输出 "ERROR! At point x"。操作 "1" 表示求 x ->y 的最短路。假设x或y不在选中的点里面。输出 "ERROR! At path x to y"。假设有不存在则输出 "No such path"。



思路:初始化 vis 数组为-1,表示所有未被选中。之后标记 vis[x] 为0表示 x 被选中。更新Floyd。把 x 点作为中间点更新最短路数组。

<span style="font-size:18px;">#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std; #define ll long long
const ll INF = 1<<30;
const double PI = acos(-1.0);
const double e = 2.718281828459;
const double eps = 1e-8;
int n, m, t;
const int MAXN = 310;
ll g[MAXN][MAXN];
int vis[MAXN]; void Floyd(int k)
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if(g[i][j] > g[i][k]+g[k][j])
g[i][j] = g[i][k]+g[k][j];
}
}
} int main()
{
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int num = 1;
while(cin>>n>>m>>t)
{
if(!n && !m && !t)
break;
memset(vis, -1, sizeof(vis));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
g[i][j] = (i==j)?0:INF;
}
}
//cout<<g[4][5]<<endl;
int p, q, x, y;
ll w;
for(int i = 1; i <= m; i++)
{
scanf("%d %d %I64d", &p, &q, &w);
if(g[p][q] > w)
g[p][q] = w;
}
if(num != 1)
printf("\n");
printf("Case %d:\n", num++);
while(t--)
{
scanf("%d", &q);
if(q == 0)
{
scanf("%d", &x);
if(vis[x] == 0)
printf("ERROR! At point %d\n", x);
else
{
vis[x] = 0;
Floyd(x);
}
}
else
{
scanf("%d %d", &x, &y);
if(vis[x]==-1 || vis[y]==-1)
printf("ERROR! At path %d to %d\n", x, y);
else
{
if(g[x][y] != INF)
printf("%I64d\n", g[x][y]);
else
printf("No such path\n");
}
}
}
}
return 0;
} </span>

HDU - 3631 Shortest Path(Floyd最短路)的更多相关文章

  1. hdu 3631 Shortest Path(Floyd)

    题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...

  2. hdu 3631 Shortest Path

    floyd算法好像很奇妙的样子.可以做到每次加入一个点再以这个点为中间点去更新最短路,效率是n*n. #include<cstdio> #include<cstring> #i ...

  3. HDU 5636 Shortest Path 暴力

    Shortest Path 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5636 Description There is a path graph ...

  4. ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]

    人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...

  5. HDU 5636 Shortest Path

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5636 题解: 1.暴力枚举: #include<cmath> #include<c ...

  6. HDU 5636 Shortest Path(Floyed,枚举)

    Shortest Path Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Tot ...

  7. HDU - 4725_The Shortest Path in Nya Graph

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...

  8. HDU 5636 Shortest Path(Floyd)

    题目链接  HDU5636 n个点,其中编号相邻的两个点之间都有一条长度为1的边,然后除此之外还有3条长度为1的边. m个询问,每次询问求两个点之前的最短路. 我们把这三条边的6个点两两算最短路, 然 ...

  9. HDU 4479 Shortest path 带限制最短路

    题意:给定一个图,求从1到N的递增边权的最短路. 解法:类似于bellman-ford思想,将所有的边先按照权值排一个序,然后依次将边加入进去更新,每条边只更新一次,为了保证得到的路径是边权递增的,每 ...

随机推荐

  1. Ps 快捷键全解

    一.工具箱(多种工具共用一个快捷键的可同时按[Shift]加此快捷键选取)矩形.椭圆选框工具 [M]移动工具 [V]套索.多边形套索.磁性套索 [L]魔棒工具 [W]裁剪工具 [C]切片工具.切片选择 ...

  2. javascript入门经典(第五版)-清华出版社之“经典”错误

    学校教材太烂,于是自己买书. 果然是入门经典,开篇就把我惊着了~ 第九页≯1.4/ch1_example2.html / <script> //script block 2 documen ...

  3. 动软生成器添加Mysql注释

    1.解决没有mysql注释问题 替换原文件下载地址 2.更新Models模板 <#@ template language="c#" HostSpecific="Tr ...

  4. DWARF调试格式的简介

    DWARF调试格式的简介 Michael J. Eager, Eager Consulting Feb, 2007 翻译:吴晖 2012年2月 如果我们可以编写确保能正确工作且永远不需要调试的程序,这 ...

  5. JS模拟CSS3动画-贝塞尔曲线

    一.什么是贝塞尔曲线 1962年,法国工程师皮埃尔·贝塞尔(Pierre Bézier),贝塞尔曲线来为为解决汽车的主体的设计问题而发明了贝塞尔曲线.如今,贝赛尔曲线是计算机图形学中相当重要的一种曲线 ...

  6. CAD梦想看图6.0安卓版详情介绍

    下载安装 MxCAD6.0(看图版).2018.10.22更新,扫描下面二维码,安装CAD梦想看图:   下载地址: http://www.mxdraw.com/help_8_20097.html 软 ...

  7. gearman的安装与使用

    Gearman是一个分发任务的程序框架,它会对作业进行排队自动分配到一系列机器上.gearman跨语言跨平台,很方便的实现异步后台任务.php官方收录:http://php.net/manual/zh ...

  8. zip相关知识梳理(一)

    zip相关知识梳理(一) 经过对zip文件的长时间研究,对zip文件进行相关知识进行梳理,虽然网上很多牛人对其做了相关基础解析,但是对于特殊情况没有进行说明,比如超过4G的zip文件该以什么格式进行编 ...

  9. Python介绍以及Python 优缺点

    Python是先编译成字节码,然后在解释执行的一门语言,而不是单纯的解释型语言 Python应用场景: Web应用开发. 操作系统管理,服务器运维的自动化脚本, 网络爬虫 科学计算 桌面软件 游戏 服 ...

  10. 爬楼梯,N级楼梯有多少种走法?

    https://blog.csdn.net/tcpipstack/article/details/45173685 一个人爬楼梯,一步可以迈一级,二级,三级台阶,如果楼梯有N级,要求编写程序,求总共有 ...