Time Limit: 1000MS
Memory Limit: 32768KB
64bit IO Format: %I64d & %I64u

SubmitStatus

Description

When YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in Informatics) in GD team. One day, GD team’s coach, Prof. GUO asked them to solve the following shortest-path problem.

There is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:

(1) Mark a vertex in the graph.

(2) Find the shortest-path between two vertices only through marked vertices.

For it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets
problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.

Could you also solve the shortest-path problem?

 

Input

The input consists of multiple test cases. For each test case, the first line contains three integers N, M and Q, where N is the number of vertices in the given graph, N≤300; M is the number of arcs, M≤100000;
and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y),
and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There
is a blank line between two consecutive test cases.

End of input is indicated by a line containing N = M = Q = 0.
 

Output

Start each test case with "Case #:" on a single line, where # is the case number starting from 1.

For operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.

For operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.

There is a blank line between two consecutive test cases.
 

Sample Input

5 10 10
1 2 6335
0 4 5725
3 3 6963
4 0 8146
1 2 9962
1 0 1943
2 1 2392
4 2 154
2 2 7422
1 3 9896
0 1
0 3
0 2
0 4
0 4
0 1
1 3 3
1 1 1
0 3
0 4
0 0 0
 

Sample Output

Case 1:
ERROR! At point 4
ERROR! At point 1
0
0
ERROR! At point 3
ERROR! At point 4
 

Source

2010 Asia Regional Tianjin Site ―― Online Contest



题意:有向图,有重边。选中一些点。在这些点里面求两点的最短路。有2个操作,操作 "0" 表示标记 x 选中,假设x之前已经被选中。输出 "ERROR! At point x"。操作 "1" 表示求 x ->y 的最短路。假设x或y不在选中的点里面。输出 "ERROR! At path x to y"。假设有不存在则输出 "No such path"。



思路:初始化 vis 数组为-1,表示所有未被选中。之后标记 vis[x] 为0表示 x 被选中。更新Floyd。把 x 点作为中间点更新最短路数组。

<span style="font-size:18px;">#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std; #define ll long long
const ll INF = 1<<30;
const double PI = acos(-1.0);
const double e = 2.718281828459;
const double eps = 1e-8;
int n, m, t;
const int MAXN = 310;
ll g[MAXN][MAXN];
int vis[MAXN]; void Floyd(int k)
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if(g[i][j] > g[i][k]+g[k][j])
g[i][j] = g[i][k]+g[k][j];
}
}
} int main()
{
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int num = 1;
while(cin>>n>>m>>t)
{
if(!n && !m && !t)
break;
memset(vis, -1, sizeof(vis));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
g[i][j] = (i==j)?0:INF;
}
}
//cout<<g[4][5]<<endl;
int p, q, x, y;
ll w;
for(int i = 1; i <= m; i++)
{
scanf("%d %d %I64d", &p, &q, &w);
if(g[p][q] > w)
g[p][q] = w;
}
if(num != 1)
printf("\n");
printf("Case %d:\n", num++);
while(t--)
{
scanf("%d", &q);
if(q == 0)
{
scanf("%d", &x);
if(vis[x] == 0)
printf("ERROR! At point %d\n", x);
else
{
vis[x] = 0;
Floyd(x);
}
}
else
{
scanf("%d %d", &x, &y);
if(vis[x]==-1 || vis[y]==-1)
printf("ERROR! At path %d to %d\n", x, y);
else
{
if(g[x][y] != INF)
printf("%I64d\n", g[x][y]);
else
printf("No such path\n");
}
}
}
}
return 0;
} </span>

HDU - 3631 Shortest Path(Floyd最短路)的更多相关文章

  1. hdu 3631 Shortest Path(Floyd)

    题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...

  2. hdu 3631 Shortest Path

    floyd算法好像很奇妙的样子.可以做到每次加入一个点再以这个点为中间点去更新最短路,效率是n*n. #include<cstdio> #include<cstring> #i ...

  3. HDU 5636 Shortest Path 暴力

    Shortest Path 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5636 Description There is a path graph ...

  4. ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]

    人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...

  5. HDU 5636 Shortest Path

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5636 题解: 1.暴力枚举: #include<cmath> #include<c ...

  6. HDU 5636 Shortest Path(Floyed,枚举)

    Shortest Path Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Tot ...

  7. HDU - 4725_The Shortest Path in Nya Graph

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...

  8. HDU 5636 Shortest Path(Floyd)

    题目链接  HDU5636 n个点,其中编号相邻的两个点之间都有一条长度为1的边,然后除此之外还有3条长度为1的边. m个询问,每次询问求两个点之前的最短路. 我们把这三条边的6个点两两算最短路, 然 ...

  9. HDU 4479 Shortest path 带限制最短路

    题意:给定一个图,求从1到N的递增边权的最短路. 解法:类似于bellman-ford思想,将所有的边先按照权值排一个序,然后依次将边加入进去更新,每条边只更新一次,为了保证得到的路径是边权递增的,每 ...

随机推荐

  1. UI/UE/ID/UED/UCD的区别(转)

    对于刚刚接触用户体验交互设计的同学来说,很多云里雾里的英文缩写,分不清各个概念代表着什么含义,今天给大家做一个简单地介绍. 简述: UI (User Interface):用户界面 UE或UX (Us ...

  2. Microsoft SQL Server 安全与权限

    Microsoft SQL Server 安全与权限 登陆角色 计算机操作系统用户 --创建Windows身份验证用户 USE [master] GO CREATE LOGIN [计算机名称\计算机用 ...

  3. UVALIVE6886 Golf Bot (FFT)

    题意:打高尔夫 给你n个距离表示你一次可以把球打远的距离 然后对于m个询问 问能否在两杆内把球打进洞 题解:平方一下就好 注意一下x0的系数为1表示打一杆 才发现数组应该开MAXN * 4 之前写的题 ...

  4. 网络编程 - socket接收大数据

    通过socket,实现客户端发送命令,将服务端执行出的结果,反回到客户端,主要4个步骤:1.服务端返回数据: 2.服务端返回数据的大小: 3.客户端接收返回数据的大小: 4.客户端按返回数据大小接收数 ...

  5. Socket中BufferedReader.readLine()的阻塞特性导致的数据无法多次发送的问题

    https://blog.csdn.net/shenpibaipao/article/details/70236657

  6. const int * 和 int * const 傻傻分不清楚

    const int * a和int const *a一样,定义时不是必须初始化,指针可以指向其他变量,但是指向的变量的值不能修改. int * const定义时必须初始化,即必须指明指向哪个变量,定义 ...

  7. Shiro-工作流程

    [与Web集成] 1.Shiro 提供了与 Web 集成的支持,其通过一个ShiroFilter 入口来拦截需要安全控制的URL,然后进行相应的控制. 2.ShiroFilter 类似于如 Strut ...

  8. Android NumberProgressBar:动态移动显示百分比进度的进度条

     Android NumberProgressBar:动态移动显示百分比进度的进度条 NumberProgressBar是github上一个开源项目,其项目主页是:https://github.c ...

  9. HDU 1254 条件过程复杂的寻找最短路

    这里一看就是找箱子到终点的最短路 一开始还傻傻的以为人的位置给的很没有意思- -,然后果然错了 没过多久想明白了错误,因为你推箱子并不是你想去哪里推就能去哪推的,首先得考虑人能否过的去,因为可能人被箱 ...

  10. MYSQL中有关数据库的简单操作

    #创建数据库CREATE DATABASE day01; #查询所有数据库SHOW DATABASES; #查看某个数据库定义信息SHOW CREATE DATABASE day01; #查询正在使用 ...