HDU - 3631 Shortest Path(Floyd最短路)
| Time Limit: 1000MS | Memory Limit: 32768KB | 64bit IO Format: %I64d & %I64u |
Description
There is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:
(1) Mark a vertex in the graph.
(2) Find the shortest-path between two vertices only through marked vertices.
For it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets
problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.
Could you also solve the shortest-path problem?
Input
and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y),
and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There
is a blank line between two consecutive test cases.
End of input is indicated by a line containing N = M = Q = 0.
Output
For operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.
For operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.
There is a blank line between two consecutive test cases.
Sample Input
5 10 10
1 2 6335
0 4 5725
3 3 6963
4 0 8146
1 2 9962
1 0 1943
2 1 2392
4 2 154
2 2 7422
1 3 9896
0 1
0 3
0 2
0 4
0 4
0 1
1 3 3
1 1 1
0 3
0 4
0 0 0
Sample Output
Case 1:
ERROR! At point 4
ERROR! At point 1
0
0
ERROR! At point 3
ERROR! At point 4
Source
题意:有向图,有重边。选中一些点。在这些点里面求两点的最短路。有2个操作,操作 "0" 表示标记 x 选中,假设x之前已经被选中。输出 "ERROR! At point x"。操作 "1" 表示求 x ->y 的最短路。假设x或y不在选中的点里面。输出 "ERROR! At path x to y"。假设有不存在则输出 "No such path"。
思路:初始化 vis 数组为-1,表示所有未被选中。之后标记 vis[x] 为0表示 x 被选中。更新Floyd。把 x 点作为中间点更新最短路数组。
<span style="font-size:18px;">#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std; #define ll long long
const ll INF = 1<<30;
const double PI = acos(-1.0);
const double e = 2.718281828459;
const double eps = 1e-8;
int n, m, t;
const int MAXN = 310;
ll g[MAXN][MAXN];
int vis[MAXN]; void Floyd(int k)
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if(g[i][j] > g[i][k]+g[k][j])
g[i][j] = g[i][k]+g[k][j];
}
}
} int main()
{
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int num = 1;
while(cin>>n>>m>>t)
{
if(!n && !m && !t)
break;
memset(vis, -1, sizeof(vis));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
g[i][j] = (i==j)?0:INF;
}
}
//cout<<g[4][5]<<endl;
int p, q, x, y;
ll w;
for(int i = 1; i <= m; i++)
{
scanf("%d %d %I64d", &p, &q, &w);
if(g[p][q] > w)
g[p][q] = w;
}
if(num != 1)
printf("\n");
printf("Case %d:\n", num++);
while(t--)
{
scanf("%d", &q);
if(q == 0)
{
scanf("%d", &x);
if(vis[x] == 0)
printf("ERROR! At point %d\n", x);
else
{
vis[x] = 0;
Floyd(x);
}
}
else
{
scanf("%d %d", &x, &y);
if(vis[x]==-1 || vis[y]==-1)
printf("ERROR! At path %d to %d\n", x, y);
else
{
if(g[x][y] != INF)
printf("%I64d\n", g[x][y]);
else
printf("No such path\n");
}
}
}
}
return 0;
} </span>
HDU - 3631 Shortest Path(Floyd最短路)的更多相关文章
- hdu 3631 Shortest Path(Floyd)
题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...
- hdu 3631 Shortest Path
floyd算法好像很奇妙的样子.可以做到每次加入一个点再以这个点为中间点去更新最短路,效率是n*n. #include<cstdio> #include<cstring> #i ...
- HDU 5636 Shortest Path 暴力
Shortest Path 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5636 Description There is a path graph ...
- ZOJ 2760 - How Many Shortest Path - [spfa最短路][最大流建图]
人老了就比较懒,故意挑了到看起来很和蔼的题目做,然后套个spfa和dinic的模板WA了5发,人老了,可能不适合这种刺激的竞技运动了…… 题目链接:http://acm.zju.edu.cn/onli ...
- HDU 5636 Shortest Path
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5636 题解: 1.暴力枚举: #include<cmath> #include<c ...
- HDU 5636 Shortest Path(Floyed,枚举)
Shortest Path Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Tot ...
- HDU - 4725_The Shortest Path in Nya Graph
The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- HDU 5636 Shortest Path(Floyd)
题目链接 HDU5636 n个点,其中编号相邻的两个点之间都有一条长度为1的边,然后除此之外还有3条长度为1的边. m个询问,每次询问求两个点之前的最短路. 我们把这三条边的6个点两两算最短路, 然 ...
- HDU 4479 Shortest path 带限制最短路
题意:给定一个图,求从1到N的递增边权的最短路. 解法:类似于bellman-ford思想,将所有的边先按照权值排一个序,然后依次将边加入进去更新,每条边只更新一次,为了保证得到的路径是边权递增的,每 ...
随机推荐
- mac系统,鼠标移动太慢
to check your speed: defaults read -g com.apple.mouse.scaling to set your speed defaults write -g co ...
- java学习日志--char和int的相互转换
package shugen; /*ASCLL码表 * 48 数字0 * 49 1 * 50 2 * 51 3 * 52 4 * 53 5 * 54 6 * 55 7 * 56 8 * 57 9 */ ...
- java基础学习日志--Stirng内存案例
案例一: public class test1 { public static void mb_swap(String Str1,String Str2) { String temp=Str1; St ...
- UVA-1599 Ideal Path(双向BFS)
题目: 给一个n个点m条边(2≤m≤100000, 1≤m≤200000)的无向图,每条边上都涂有一种颜色(用1到1000000000表示).求从结点1到结点n的一条路径, 使得经过的边数尽量少,在此 ...
- <SpringMvc>入门六 异常处理
如果不做异常处理,那么一直将错误向上抛出,则会最后在页面上显示错误代码 服务启动后,访问test1方法,页面会报500 为了提示友好的错误页面,所以需要做异常处理 1.编写自定义异常类(做提示信息的) ...
- Python爬虫入门教程: 27270图片爬取
今天继续爬取一个网站,http://www.27270.com/ent/meinvtupian/ 这个网站具备反爬,so我们下载的代码有些地方处理的也不是很到位,大家重点学习思路,有啥建议可以在评论的 ...
- Python数据分析与展示(1)-数据分析之表示(2)-NumPy数据存取与函数
NumPy数据存取与函数 数据的CSV文件存取 CSV文件 CSV(Comma-Separated Value,逗号分隔值) CSV是一种常见的文件格式,用来存储批量数据. 将数据写入CSV文件 np ...
- TestNG常用注解
原文链接:https://www.yiibai.com/testng/basic-annotations.html 以下是TestNG支持的注释列表: 注解 描述 @BeforeSuite 在该 ...
- qemu-guest-agent简介
经常使用vmWare的同学都知道有vmware-tools这个工具,这个安装在vm内部的工具,可以实现宿主机与虚拟机的通讯,大大增强了虚拟机的性能与功能, 如vmware现在的Unity mode下可 ...
- MySql join匹配原理
疑问 表:sl_sales_bill_head 订单抬头表 数据行:8474 表:sl_sales_bill 订单明细 数据行:8839 字段:SALES_BILL_NO 订单号 情 ...