Description

共有m部电影,编号为1~m,第i部电影的好看值为w[i]。

在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部。

你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影。如果同一部电影你观看多于一次,你会感到无聊,于是无法获得这部电影的好看值。所以你希望最大化观看且仅观看过一次的电影的好看值的总和。

Input

第一行两个整数n,m(1<=m<=n<=1000000)。

第二行包含n个整数f[1],f[2],…,f[n](1<=f[i]<=m)。

第三行包含m个整数w[1],w[2],…,w[m](1<=w[j]<=1000000)。

Output

输出观看且仅观看过一次的电影的好看值的总和的最大值。

Sample Input

9 4
2 3 1 1 4 1 2 4 1
5 3 6 6

Sample Output

15
样例解释:
观看第2,3,4,5,6,7天内放映的电影,其中看且仅看过一次的电影的编号为2,3,4。

思路:很神的题,一直在想O(n)的算法 然后没有结果 然后查了解题想了线段树的思路才想出来了

枚举区间左端点 然后线段树可以维护以这个点为左端点的最大值 然后就可以了

#include<cstdio>

#include<string.h>

#include<algorithm>

#define maxn 1000000

#define ll long long

using namespace std;

int a[maxn],w[maxn],nex[maxn],las[maxn];

ll lazy[maxn*4],tree[maxn*4];

void add(int node,int l,int r,int ql,int qr,ll w)

{

if(ql<=l&&r<=qr){lazy[node]+=w;return;}

int mid=(l+r)>>1;

if(lazy[node]!=0){

tree[node]+=lazy[node];lazy[node*2]+=lazy[node];

lazy[node*2+1]+=lazy[node];lazy[node]=0;

}

if(ql<=mid)add(node*2,l,mid,ql,qr,w);

if(qr>mid)add(node*2+1,mid+1,r,ql,qr,w);

tree[node]=max(tree[node*2]+lazy[node*2],tree[node*2+1]+lazy[node*2+1]);

}

ll query(int node,int l,int r,int ql,int qr){

ll ans=0;

if(lazy[node]!=0){

tree[node]+=lazy[node];lazy[node*2]+=lazy[node];

lazy[node*2+1]+=lazy[node];lazy[node]=0;

}

if(ql<=l&&r<=qr)return tree[node];int mid=(l+r)>>1;

if(ql<=mid)ans=max(ans,query(node*2,l,mid,ql,qr));

if(mid<qr)ans=max(ans,query(node*2+1,mid+1,r,ql,qr));

return ans;

}

int main(){

int n,m;ll ans=0;scanf("%d%d",&n,&m);

for(int i=1;i<=n;i++)scanf("%d",&a[n-i+1]);for(int i=1;i<=m;i++)scanf("%d",&w[i]);

for(int i=1;i<=n;i++)nex[i]=las[a[i]],las[a[i]]=i;

for(int i=1;i<=n;i++){

add(1,1,n+1,nex[i]+1,i+1,w[a[i]]);

if(nex[i]!=0)add(1,1,n+1,nex[nex[i]]+1,nex[i]+1,-w[a[i]]);

ans=max(ans,query(1,1,n+1,1,i+1));

}

printf("%lld\n",ans);return 0;

}

BZOJ 3747: [POI2015]Kinoman 【线段树】的更多相关文章

  1. Bzoj 3747: [POI2015]Kinoman 线段树

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 222[Submit][Stat ...

  2. BZOJ 3747 POI2015 Kinoman 段树

    标题效果:有m点,每个点都有一个权值.现在我们有这个m为点的长度n该序列,寻求区间,它仅出现一次在正确的点区间内值和最大 想了很久,甚至神标题,奔说是水的问题--我醉了 枚举左点 对于每个请求留点右键 ...

  3. 3747: [POI2015]Kinoman|线段树

    枚举左区间线段树维护最大值 #include<algorithm> #include<iostream> #include<cstdlib> #include< ...

  4. 【BZOJ3747】[POI2015]Kinoman 线段树

    [BZOJ3747][POI2015]Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第 ...

  5. BZOJ 3747 POI2015 Kinoman

    因为上午没有准备够题目,结果发现写完这道题没题可写了QAQ 又因为这道题范围是100w,我写了发线段树,以为要T,上午就花了一个小时拼命卡常数 结果下午一交居然过了QAQ 我们考虑枚举L,求最大R使得 ...

  6. 【bzoj3747】[POI2015]Kinoman 线段树区间合并

    题目描述 一个长度为n的序列,每个数为1~m之一.求一段连续子序列,使得其中之出现过一次的数对应的价值之和最大. 输入 第一行两个整数n,m(1<=m<=n<=1000000). 第 ...

  7. 【bzoj3747】[POI2015]Kinoman - 线段树(经典)

    Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...

  8. BZOJ3747:[POI2015]Kinoman(线段树)

    Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...

  9. 【BZOJ 3747】 3747: [POI2015]Kinoman (线段树)

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 830  Solved: 338 Description ...

随机推荐

  1. Oracle汇总

    1.数据库事务并发会产生那些问题?有哪些隔离级别,分别能够避免什么错误,而无法避免什么错误? a.事务并发会导致三种问题:脏读.不可重复读.幻象读 脏读:读取了未提交的数据 不可重复读:前后读取同一行 ...

  2. 微软爆料新型系统,Windows7,Windows10强势来袭

    本系统是10月5日最新完整版本的Windows10 安装版镜像,win10正式版,更新了重要补丁,提升应用加载速度,微软和百度今天宣布达成合作,百度成为win10 Edge浏览器中国默认主页和搜索引擎 ...

  3. UVA 11400 Lighting System Design 照明系统设计

    首先是一个贪心,一种灯泡要么全都换,要么全都不换. 先排序,定义状态d[i]为前面i种灯泡的最小花费,状态转移就是从d[j],j<i,加上 i前面的j+1到i-1种灯泡换成i的花费. 下标排序玩 ...

  4. Eclipse 和 MyEclipse 工程描述符

    有时候在一个Java工程里我们需要加入第三方jar包,这时你加入的最好相对路径, 而不是绝对路径.否则你的工程拿到别处就不行运行了.意思就是说你最好把相关的jar放到工程目录下. 对于Web工程来说相 ...

  5. Java中System.setProperty()

    Java中System.setProperty()用法 <转抄> // Daysafter :Integer中 getInteger( String s); getInteger( Str ...

  6. 理解 React,但不理解 Redux,该如何通俗易懂的理解 Redux?(转)

    作者:Wang Namelos 链接:https://www.zhihu.com/question/41312576/answer/90782136来源:知乎 解答这个问题并不困难:唯一的要求是你熟悉 ...

  7. 计算机图形学:贝塞尔曲线(Bezier Curve)

    计算机图形学:贝塞尔曲线(Bezier Curve) 贝塞尔能由贝塞尔样条组合而成,也可产生更高维的贝塞尔曲面.

  8. Codeforces Round #273 (Div. 2)-B. Random Teams

    http://codeforces.com/contest/478/problem/B B. Random Teams time limit per test 1 second memory limi ...

  9. 监控linux各主机系统时间是否一致

    #!/bin/bashSTATE_OK=0 STATE_WARNING=1 STATE_CRITICAL=2 STATE_UNKNOWN=3PASSWD='**************'print_h ...

  10. JS中Null与Undefined的区别--2015-06-26

    在JavaScript中存在这样两种原始类型:Null与Undefined.这两种类型常常会使JavaScript的开发人员产生疑惑,在什么时候是Null,什么时候又是Undefined? Undef ...