pre:http://www.cnblogs.com/lokiii/p/8435499.html

和最长k可重区间集问题差不多,也就是价值的计算方法不一样,但是注意这里可能会有x0x1的情况也就是lr的情况,然后就TTTTTLE。

其实处理方法很粗暴,因为是开线段,所以可以把它扩大一倍,然后就可以取精度差,对于l!=r,l++,否则l--。



然后正常建模即可。

这个建模大概是用了取补集的思想,把覆盖和没覆盖相转化。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<algorithm>
#include<map>
using namespace std;
const int N=2000005,inf=1e9;
int n,k,m,h[N],cnt=1,l[1005],r[1005],w[1005],a[1005],tot,dis[N],s,t,ans,fr[N];
bool v[N];
map<int,int>mp;
struct qwe
{
int ne,no,to,va,c;
}e[N<<2];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w,int c)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
e[cnt].c=c;
h[u]=cnt;
}
void ins(int u,int v,int w,int c)
{
add(u,v,w,c);
add(v,u,0,-c);
}
bool spfa()
{
queue<int>q;
for(int i=s;i<=t;i++)
dis[i]=-inf;
dis[s]=0;
v[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
v[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&dis[e[i].to]<dis[u]+e[i].c)
{
dis[e[i].to]=dis[u]+e[i].c;
fr[e[i].to]=i;
if(!v[e[i].to])
{
v[e[i].to]=1;
q.push(e[i].to);
}
}
}
return dis[t]!=-inf;
}
void mcf()
{
int x=inf;
for(int i=fr[t];i;i=fr[e[i].no])
x=min(x,e[i].va);
for(int i=fr[t];i;i=fr[e[i].no])
{
e[i].va-=x;
e[i^1].va+=x;
ans+=x*e[i].c;
}
}
int main()
{
n=read(),k=read();
for(int i=1;i<=n;i++)
{
int x1=read(),y1=read(),x2=read(),y2=read();
w[i]=sqrt((long long)(1ll*(x1-x2)*(x1-x2)+1ll*(y1-y2)*(y1-y2)));
l[i]=x1*2,r[i]=x2*2;
if(r[i]<l[i])
swap(l[i],r[i]);
l[i]+=(l[i]==r[i])?-1:1;
a[++tot]=l[i],a[++tot]=r[i];
}
sort(a+1,a+1+tot);
m=unique(a+1,a+1+tot)-a-1;
s=0,t=m+1;
for(int i=1;i<=m;i++)
mp[a[i]]=i;
for(int i=1;i<=n;i++)
ins(mp[l[i]],mp[r[i]],1,w[i]);
for(int i=0;i<=m;i++)
ins(i,i+1,k,0);
while(spfa())
mcf();
printf("%d\n",ans);
return 0;
}

洛谷 P3357 最长k可重线段集问题【最大流】的更多相关文章

  1. 洛谷P3357 最长k可重线段集问题(费用流)

    题目描述 给定平面 x-O-yx−O−y 上 nn 个开线段组成的集合 II ,和一个正整数 kk .试设计一个算法,从开线段集合 II 中选取出开线段集合 S\subseteq IS⊆I ,使得在  ...

  2. 洛谷P3357 最长k可重线段集问题(费用流)

    传送门 其实和最长k可重区间集问题差不多诶…… 把这条开线段给压成x轴上的一条线段,然后按上面说的那种方法做即可 然而有一个坑点是线段可以垂直于x轴,然后一压变成一个点,连上正权环,求最长路……然后s ...

  3. 洛谷P3358 最长k可重区间集问题(费用流)

    题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...

  4. P3357 最长k可重线段集问题 网络流

    P3357 最长k可重线段集问题 题目描述 给定平面 x-O-yx−O−y 上 nn 个开线段组成的集合 II,和一个正整数 kk .试设计一个算法,从开线段集合 II 中选取出开线段集合 S\sub ...

  5. 【网络流24题】最长k可重线段集(费用流)

    [网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...

  6. [网络流24题] 最长k可重线段集问题 (费用流)

    洛谷传送门 LOJ传送门 最长k可重区间集问题的加强版 大体思路都一样的,不再赘述,但有一些细节需要注意 首先,坐标有负数,而且需要开$longlong$算距离 但下面才是重点: 我们把问题放到了二维 ...

  7. 洛谷P3358 最长k可重区间集问题(费用流)

    传送门 因为一个zz错误调了一个早上……汇点写错了……spfa也写错了……好吧好像是两个…… 把数轴上的每一个点向它右边的点连一条边,容量为$k$,费用为$0$,然后把每一个区间的左端点向右端点连边, ...

  8. 洛谷 P3358 最长k可重区间集问题 【最大费用最大流】

    同 poj 3680 https:www.cnblogs.com/lokiii/p/8413139.html #include<iostream> #include<cstdio&g ...

  9. luogu P3357 最长k可重线段集问题

    这题和3358一模一样,建模形式直接不用变,就两点不一样,一是len变化了,加入y后再更新即可,还有就是可能会出现x0=x1的情况,即一条开线段垂直x轴,如果我们依旧按照上一题的建图方法,就会出现负权 ...

随机推荐

  1. 各种ORM框架对比(理论篇,欢迎来观摩,并且纠正部分错误,防止误区)

    各种ORM框架对比 目前框架有以下 PetaPoco Dapper.NET Massive Simple.Data Chain PetaPoco 轻量级,以前单文件,目前有维护形成项目级别,适合多个数 ...

  2. Ubuntu 16.04安装Guake Terminal终端(使用一键唤醒功能)

    安装: sudo apt-get install guake-indicator sudo apt-get install guake 使用: 先启动guake-indicator,再启动guake. ...

  3. java自动识别用户上传的文本文件编码

    原文:http://www.open-open.com/code/view/1420514359234 经常碰到用户上传的部分数据文本文件乱码问题,又不能限制用户的上传的文件编码格式(这样对客户的要求 ...

  4. [Zlib]_[0基础]_[使用zlib库压缩文件]

    场景: 1. WIndows上没找到系统提供的win32 api来生成zip压缩文件, 有知道的大牛麻烦留个言. 2. zlib比較经常使用,编译也方便,使用它来做压缩吧. MacOSX平台默认支持z ...

  5. 剑指Offer面试题43(Java版):n个骰子的点数

    题目:把n个骰子仍在地上.全部骰子朝上一面的点数之和为s,输入n,打印出s的全部可能的值出现的概率. 解法一:基于递归求骰子的点数,时间效率不够高 如今我们考虑怎样统计每个点数出现的次数. 要向求出n ...

  6. 解决cell切割线不是全屏问题

    if ([_tableView respondsToSelector:@selector(setSeparatorInset:)]) { [_tableView setSeparatorInset:U ...

  7. Android签名机制之---签名验证过程具体解释

    一.前言 今天是元旦,也是Single Dog的嚎叫之日,仅仅能写博客来祛除寂寞了,今天我们继续来看一下Android中的签名机制的姊妹篇:Android中是怎样验证一个Apk的签名. 在前一篇文章中 ...

  8. Kemans算法及其Python 实现

    算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就 ...

  9. android 怎样将主菜单图标改成按安装时间排序

    1. 在 LauncherModel.java 中增加例如以下代码, 假设是KK Launcher3 ApplicationInfo要替换为AppInfo public static final Co ...

  10. 远程调试 Asp.Net 项目

    项目部署到产品环境后,难免会发生一些故障,有一些可以在本地测试环境中直接重现,而有一些则无法重现.对于可以在本地测试环境中重现的Bug,开发人员往往能够很迅速地进行问题排查.而对于无法重现的Bug,就 ...