洛谷3794:签到题IV——题解
https://www.luogu.org/problemnew/show/P3794
题目见上。
有一个套路(虽然我到现在还不会),就是固定一个端点,二分查右端点。
显然这题的正解是O(nlogn)的,那么这个套路没准好用。
考虑固定了左端点,因为每次区间gcd都要比上一个区间gcd/2或不变,能够证明一共有O(log)种取值。
而或同理,每次在一个进制位上+1,同样有O(log)种取值。
因此我们二分求出每块gcd值相等的块,然后再求出每块或值相等的块,按照题目要求取个或就行了,可以st表维护,为O(nlog^2)的复杂度。
这个多出来的log是因为我们对于log gcd块内每次log或块,自然变慢,考虑能不能后来的块继承前面的块的信息。
当然可以,于是你就有了下面的正解(代码很好读我就不写解释了),到这篇博客写完为止,开O2 rk1.
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=5e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct range{
int l,r,v;
}g[N],o[N];
int n,k,a[N],mp[*N];
inline int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
inline void merge(range t[],int &l){
int len=;
for(int i=;i<=l;i++){
if(!len||t[len].v!=t[i].v)t[++len]=t[i];
else t[len].l=t[i].l;
}
l=len;
}
int main(){
n=read(),k=read();
for(int i=;i<=n;i++)a[i]=read();
ll sum=;int r1=,r2=;
for(int i=n;i>=;i--){
for(int j=;j<=r1;j++)g[j].v=gcd(g[j].v,a[i]);
for(int j=;j<=r2;j++)o[j].v=o[j].v|a[i];
g[++r1]=(range){i,i,a[i]};o[++r2]=(range){i,i,a[i]};
merge(g,r1);merge(o,r2);
for(int j=;j<=r2;j++)mp[o[j].v]=j;
for(int j=;j<=r1;j++){
int p=mp[g[j].v^k];
if(!p)continue;
int l=g[j].l,r=g[j].r;
l=max(l,o[p].l),r=min(r,o[p].r);
if(l<=r)sum+=r-l+;
}
for(int j=;j<=r2;j++)mp[o[j].v]=;
}
printf("%lld\n",sum);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
洛谷3794:签到题IV——题解的更多相关文章
- 洛谷3794 签到题IV
题目描述 给定一个长度为n的序列$a_1,a_2...a_n$,其中每个数都是正整数. 你需要找出有多少对(i,j),$1 \leq i \leq j \leq n$且$gcd(a_i,a_{i+1} ...
- A 洛谷 P3601 签到题 [欧拉函数 质因子分解]
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- 洛谷P3601签到题(欧拉函数)
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- 洛谷 P3601 签到题
https://www.luogu.org/problemnew/show/P3601 一道关于欧拉函数的题. 读完题目以后我们知道所谓的$aindao(x)=x- \phi (x) $. 对于x小的 ...
- [Luogu 3794]签到题IV
Description 题库链接 给定长度为 \(n\) 的序列 \(A\).求有多少子段 \([l,r]\) 满足 \[ \left(\gcd_{l\leq i\leq r}A_i\right) \ ...
- 洛谷P3601 签到题
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 洛谷P3764 签到题 III
题目背景 pj组选手zzq近日学会了求最大公约数的辗转相除法. 题目描述 类比辗转相除法,zzq定义了一个奇怪的函数: typedef long long ll; ll f(ll a,ll b) { ...
- 【noip】跟着洛谷刷noip题2
noip好难呀. 上一个感觉有点长了,重开一个. 36.Vigenère 密码 粘个Openjudge上的代码 #include<cstdio> #include<iostream& ...
- [洛谷P1707] 刷题比赛
洛谷题目连接:刷题比赛 题目背景 nodgd是一个喜欢写程序的同学,前不久洛谷OJ横空出世,nodgd同学当然第一时间来到洛谷OJ刷题.于是发生了一系列有趣的事情,他就打算用这些事情来出题恶心大家-- ...
随机推荐
- photoshop cc 2018安装破解教程(破解补丁,亲测,绝对可用)
破解步骤说明:下载地址百度网盘,https://pan.baidu.com/s/1cWtpUesl2fms3tFwEC0MiQ 1.右键解压Adobe Photoshop CC 2018 64位这个文 ...
- Windows运行机理——窗口和句柄
Windows运行机理这系列文章都是来至于<零基础学Qt4编程>——吴迪,个人觉得写得很好,所以进行了搬运和个人加工 1. 窗口 窗口是Windows应用程序中一个非常重要的元素,一个Wi ...
- JAVA基础学习之路(三)类定义及构造方法
类的定义及使用 一,类的定义 class Book {//定义一个类 int price;//定义一个属性 int num; public static int getMonney(int price ...
- Vuejs 基础与语法
Vue 实例 创建第一个实例 {{}} 被称之为插值表达式.可以用来进行文本插值. <!DOCTYPE html> <html lang="en"> < ...
- Java进阶知识点:服务端高并发的基石 - NIO与Reactor AIO与Proactor
一.背景 要提升服务器的并发处理能力,通常有两大方向的思路. 1.系统架构层面.比如负载均衡.多级缓存.单元化部署等等. 2.单节点优化层面.比如修复代码级别的性能Bug.JVM参数调优.IO优化等等 ...
- Machine Learning笔记整理 ------ (三)基本性能度量
1. 均方误差,错误率,精度 给定样例集 (Example set): D = {(x1, y1), (x2, y2), (x3, y3), ......, (xm, ym)} 其中xi是对应属性的值 ...
- 3D动态人脸识别技术分析——世纪晟人脸识别实现三维人脸建模
- 目录 - 国内3D动态人脸识别现状概况 - 新形势下人脸识别技术发展潜力 - 基于深度学习的3D动态人脸识别技术分析 1. 非线性数据建模方法 2. 基于3D变形模型的人脸建模 - 案例结合——世 ...
- 2.azkaban3.0安装
安装规划安装azkban1.安装配置数据库2.下载安装web server3.安装mulit executor4.安装azkaban插件AZKABAN参数安装出现的问题 安装规划 IP 角色 端口 1 ...
- jQuery实现仿京东商城图片放大镜
效果图: 不废话直接上代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- 硬件PCB Layout布局布线Checklist检查表(通用版)
按部位分类 技术规范内容 1 PCB布线与布局 PCB布线与布局隔离准则:强弱电流隔离.大小电压隔离,高低频率隔离.输入输出隔离.数字模拟隔离.输入输出隔离,分界标准为相差一个数量级.隔离方法包括:空 ...