P1890 gcd区间

题目描述

给定一行n个正整数a[1]..a[n]。

m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数。

输入输出格式

输入格式:

第一行两个整数n,m。

第二行n个整数表示a[1]..a[n]。

以下m行,每行2个整数表示询问区间的左右端点。

保证输入数据合法。

输出格式:

共m行,每行表示一个询问的答案。

输入输出样例

输入样例#1: 复制

5 3
4 12 3 6 7
1 3
2 3
5 5
输出样例#1: 复制

1
3
7

说明

对于30%的数据,n <= 100, m <= 10

对于60%的数据,m <= 1000

对于100%的数据,1 <= n <= 1000,1 <= m <= 1,000,000

                0 < 数字大小 <= 1,000,000,000

n^2*log n枚举,o(1)查询    枚举左右端点然后求出区间的gcd
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 1010
using namespace std;
int n,m,x,y,a[N],gcd[N][N];
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int GCD(int a,int b)
{
    ) return a;
    return  GCD(b,a%b);
}
int main()
{
    n=read();m=read();
    ;i<=n;i++)
     a[i]=read();
    ;i<=n;i++)
     for(int j=i;j<=n;j++)
      {
           if(j==i) gcd[i][j]=a[j];
           else
           {
                x=min(gcd[i][j-],a[j]);
                y=max(gcd[i][j-],a[j]);
                gcd[i][j]=GCD(x,y);
           }
      }
    while(m--)
    {
        x=read(),y=read();
        printf("%d\n",gcd[x][y]);
    }
    ;
}


洛谷——P1890 gcd区间的更多相关文章

  1. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  2. 洛谷P1890 gcd区间 [2017年6月计划 数论09]

    P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n ...

  3. 洛谷P1890 gcd区间

    题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表 ...

  4. 洛谷1890 gcd区间

    题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a ...

  5. P1890 gcd区间

    P1890 gcd区间我一开始80分暴力,模拟100做法dpO(n^2+m)f[i][j]表示i到j的 gcd初始化f[i][i]=i;f[i][j]=gcd(f[i][j-1],a[j]);这样查询 ...

  6. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  7. 洛谷 1063 dp 区间dp

    洛谷 1063 dp 区间dp 感觉做完这道提高组T1的题之后,受到了深深的碾压,,最近各种不在状态.. 初看这道题,不难发现它具有区间可并性,即(i, j)的最大值可以由(i, k) 与 (k+1, ...

  8. BZOJ5259/洛谷P4747: [Cerc2017]区间

    BZOJ5259/洛谷P4747: [Cerc2017]区间 2019.8.5 [HZOI]NOIP模拟测试13 C.优美序列 思维好题,然而当成NOIP模拟题↑真的好吗... 洛谷和BZOJ都有,就 ...

  9. 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化

    洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...

随机推荐

  1. 【C++对象模型】第三章 Data语义学

    1. Data Member 的布局 同一个Access Section(private, public等)中,data member的顺序按照声明顺序排列,但是没有规定需要连续排序.同时编译器可能会 ...

  2. ReaderWriterLockSlim 类

    今天在看Nop源码时,PluginManager中用到了ReaderWriterLockSlim类,于是简单做个笔记. ReaderWriterLockSlim 表示用于管理资源访问的锁定状态,可实现 ...

  3. java -classpath or -cp 的设置和解释

    classpath is a parameter—set either on the command-line, or through an environment variable—that tel ...

  4. oracle scott用户不存在

    scott用户拥有一些基础的数据表,可以供我们练习sql.先执行 alter user scott account unlock; 查看scott用户是否存在 当scott用户不存在,我们就需要在$O ...

  5. margin 居中

    左右auto加个宽度.margin-left: auto; margin-right: auto; width:640px;

  6. windows下安装python过程

    方法一:如果你的电脑没有安装python,推荐使用anaconda(自带python环境,同时自带各种第三方库,可以省去很多麻烦) 这里提供两个下载地址:1,.官网https://www.anacon ...

  7. 为什么IO多路复用需要采用非阻塞式IO

    近段时间开始学习<Unix网络编程>,代码实现了一个简单的IO多路复用+阻塞式的服务端,在学习了非阻塞式IO后,有一个疑问,即: 假如调用了select,并且关注了几个描述字,当关注的描述 ...

  8. Win10打开照片提示“无效的注册表值”解决方法

    1.点开开始菜单,右键单击,选择“以管理员运行”[键盘win键+R]输入PowerShell. 2.输入Get-AppxPackage *photo* | Remove-AppxPackage后回车. ...

  9. C中级 消息队列设计

    引言  - 补充好开始 消息队列在游戏服务器层应用非常广泛. 应用于各种耗时的IO操作业务上.消息队列可以简单理解为 [消息队列 = 队列 + 线程安全]本文参照思路如下, 最后献上一个大神们斗法的场 ...

  10. VPS性能综合测试(7):服务器压力测试,VPS系统负载测试

    1.可能有的VPS主机使用性能测评工具得出的结果很优秀,但是最终运用到实际生产时却发现VPS主机根本无法承受理论上应该达到的流量压力,这时我们就不得不要怀疑VPS商是不是对VPS主机的参数进行了“篡改 ...