【转】 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比
梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正。
下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的记录条数,j是参数的个数。
1、批量梯度下降的求解思路如下:
(1)将J(theta)对theta求偏导,得到每个theta对应的的梯度
(2)由于是要最小化风险函数,所以按每个参数theta的梯度负方向,来更新每个theta
(3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果m很大,那么可想而知这种方法的迭代速度!!所以,这就引入了另外一种方法,随机梯度下降。
2、随机梯度下降的求解思路如下:
(1)上面的风险函数可以写成如下这种形式,损失函数对应的是训练集中每个样本的粒度,而上面批量梯度下降对应的是所有的训练样本:
(2)每个样本的损失函数,对theta求偏导得到对应梯度,来更新theta
(3)随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将theta迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。
3、对于上面的linear regression问题,与批量梯度下降对比,随机梯度下降求解的会是最优解吗?
(1)批量梯度下降---最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小。
(2)随机梯度下降---最小化每条样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近。
4、梯度下降用来求最优解,哪些问题可以求得全局最优?哪些问题可能局部最优解?
对于上面的linear regression问题,最优化问题对theta的分布是unimodal,即从图形上面看只有一个peak,所以梯度下降最终求得的是全局最优解。然而对于multimodal的问题,因为存在多个peak值,很有可能梯度下降的最终结果是局部最优。
5、随机梯度和批量梯度的实现差别
以前一篇博文中NMF实现为例,列出两者的实现差别(注:其实对应python的代码要直观的多,以后要练习多写python!)
- // 随机梯度下降,更新参数
- public void updatePQ_stochastic(double alpha, double beta) {
- for (int i = 0; i < M; i++) {
- ArrayList<Feature> Ri = this.dataset.getDataAt(i).getAllFeature();
- for (Feature Rij : Ri) {
- // eij=Rij.weight-PQ for updating P and Q
- double PQ = 0;
- for (int k = 0; k < K; k++) {
- PQ += P[i][k] * Q[k][Rij.dim];
- }
- double eij = Rij.weight - PQ;
- // update Pik and Qkj
- for (int k = 0; k < K; k++) {
- double oldPik = P[i][k];
- P[i][k] += alpha
- * (2 * eij * Q[k][Rij.dim] - beta * P[i][k]);
- Q[k][Rij.dim] += alpha
- * (2 * eij * oldPik - beta * Q[k][Rij.dim]);
- }
- }
- }
- }
- // 批量梯度下降,更新参数
- public void updatePQ_batch(double alpha, double beta) {
- for (int i = 0; i < M; i++) {
- ArrayList<Feature> Ri = this.dataset.getDataAt(i).getAllFeature();
- for (Feature Rij : Ri) {
- // Rij.error=Rij.weight-PQ for updating P and Q
- double PQ = 0;
- for (int k = 0; k < K; k++) {
- PQ += P[i][k] * Q[k][Rij.dim];
- }
- Rij.error = Rij.weight - PQ;
- }
- }
- for (int i = 0; i < M; i++) {
- ArrayList<Feature> Ri = this.dataset.getDataAt(i).getAllFeature();
- for (Feature Rij : Ri) {
- for (int k = 0; k < K; k++) {
- // 对参数更新的累积项
- double eq_sum = 0;
- double ep_sum = 0;
- for (int ki = 0; ki < M; ki++) {// 固定k和j之后,对所有i项加和
- ArrayList<Feature> tmp = this.dataset.getDataAt(i).getAllFeature();
- for (Feature Rj : tmp) {
- if (Rj.dim == Rij.dim)
- ep_sum += P[ki][k] * Rj.error;
- }
- }
- for (Feature Rj : Ri) {// 固定k和i之后,对多有j项加和
- eq_sum += Rj.error * Q[k][Rj.dim];
- }
- // 对参数更新
- P[i][k] += alpha * (2 * eq_sum - beta * P[i][k]);
- Q[k][Rij.dim] += alpha * (2 * ep_sum - beta * Q[k][Rij.dim]);
- }
- }
- }
- }
http://blog.csdn.net/lilyth_lilyth/article/details/8973972
【转】 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比的更多相关文章
- batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)
批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时updat ...
- 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD
排版也是醉了见原文:http://www.cnblogs.com/maybe2030/p/5089753.html 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度 ...
- 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比[转]
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...
- 随机梯度下降 Stochastic gradient descent
梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可. 在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只 ...
- 机器学习-随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟 ...
- 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)
https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...
- 批量梯度下降(Batch gradient descent) C++
At each step the weight vector is moved in the direction of the greatest rate of decrease of the err ...
- 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解
梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent ...
- online learning,batch learning&批量梯度下降,随机梯度下降
以上几个概念之前没有完全弄清其含义及区别,容易混淆概念,在本文浅析一下: 一.online learning vs batch learning online learning强调的是学习是实时的,流 ...
随机推荐
- VS2015操作Oracle数据需要做那些设置?
1>在oracle网上下载:ODP.NET 2> 要根据自己的oracle 数据32bit/64bit,选择下载. 3> 根据提示配置tnsnames.ora文件. # alias ...
- 刚开始学HTML自己做的,求大神些多多指教。
!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> ...
- 在MySQL中创建实现自增的序列(Sequence)的教程
这篇文章主要介绍了在MySQL中创建实现自增的序列(Sequence)的教程,分别列举了两个实例并简单讨论了一些限制因素,需要的朋友可以参考下 项目应用中,曾有以下一个场景: 接口中要求发送一个int ...
- 2015.8.2 jdbc实现商品类的增删查改
在惠普济宁基地进行了两周sql和java的学习,学到很多东西 刚才实现了用jdbc访问数据库对数据库进行操作,是用eclipse写的,过几天移植到NetBeans上,个人还是比较习惯看图形化界面 前几 ...
- SQL Server 取前一天的0点和23点59分59秒
DECLARE @startDate1 DATE; DECLARE @startDate DATETIME; ,@startDate1); ,CONVERT(DATETIME,@startDate1) ...
- YII框架下实现密码修改
YII2 实现修改密码功能 主要难点: 1.密码加密 YII2对密码加密生成的结果是不同的,即用相同的初始密码在不同时间得到的加密结果不同,所以我们不能用常用的方法去验证密码是否正确(将密码加密后与数 ...
- mybatis CRUD
方法一:通过配置文件 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBL ...
- python下读取excel文件
项目中要用到这个,所以记录一下. python下读取excel文件方法多种,用的是普通的xlrd插件,因为它各种版本的excel文件都可读. 首先在https://pypi.python.org/py ...
- 宣布在日本地区正式发布 Windows Azure
昨天,我与 Microsoft 日本的集团副总裁 Yasuyuki Higuchi 一同站在台上,宣布在两个新地区正式发布 Windows Azure:日本东部和日本西部.能够亲自见证 Micr ...
- Linux 下的多线程编程
随着你对编程的深入,多线程是一个免不了的话题,在这里就对多线程做一个比较详细的总结. 首先摆在我们面前的就是什么是线程,以及为么会有这个东西.记得之前学习的时候自己会画一张很大的图,在图中可以详细的写 ...