BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位。

这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理, 那么10^t就可以确定,加上快速幂就行了

------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
typedef long long ll;
typedef int matrix[3][3];
 
ll N;
int MOD;
matrix mat, Q, tmp;
 
void Mul(matrix &a, matrix &b) {
memset(tmp, 0, sizeof tmp);
for(int i = 0; i < 3; i++)
for(int k = 0; k < 3; k++)
for(int j = 0; j < 3; j++)
if((tmp[i][j] += ll(a[i][k]) * b[k][j] % MOD) >= MOD)
tmp[i][j] -= MOD;
memcpy(a, tmp, sizeof a);
}
 
void Power(matrix &a, matrix &b, ll k) {
for(; k; k >>= 1, Mul(b, b))
if(k & 1) Mul(a, b);
}
 
void Init_matrix() {
memset(mat, 0, sizeof mat);
mat[0][1] = mat[0][2] = mat[1][1] = mat[1][2] = mat[2][2] = 1;
memset(Q, 0, sizeof Q);
for(int i = 0; i < 3; i++)
Q[i][i] = 1;
}
 
int main() {
scanf("%lld%d", &N, &MOD);
int len = 0, B = 0, C = 0;
ll p = 1;
for(ll t = N; t; t /= 10, len++);
for(int i = 1; i < len; i++) {
Init_matrix();
mat[0][0] = (p = p * 10) % MOD;
Power(Q, mat, p - p / 10);
B = (ll(B) * Q[0][0] % MOD + ll(C) * Q[0][1] % MOD + Q[0][2]) % MOD;
C = ((p % MOD) - 1 + MOD) % MOD;
}
Init_matrix();
mat[0][0] = p * 10 % MOD;
Power(Q, mat, N - p + 1);
B = (ll(B) * Q[0][0] % MOD + ll(C) * Q[0][1] % MOD + Q[0][2]) % MOD;
printf("%d\n", B);
return 0;
}

------------------------------------------------------------------------------------

2326: [HNOI2011]数学作业

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1452  Solved: 841
[Submit][Status][Discuss]

Description

Input

Output

Sample Input

Sample Output

HINT

Source

BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )的更多相关文章

  1. BZOJ 2326: [HNOI2011]数学作业(矩阵乘法)

    传送门 解题思路 NOIp前看到的一道题,当时想了很久没想出来,NOIp后拿出来看竟然想出来了.注意到有递推\(f[i]=f[i-1]*poww[i]+i\),\(f[i]\)表示\(1-i\)连接起 ...

  2. [HNOI2011]数学作业 矩阵快速幂 BZOJ 2326

    题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 NNN 和 MMM ,要求计算Concatenate(1..N) Concatenate (1 .. N) ...

  3. bzoj 2326: [HNOI2011]数学作业【dp+矩阵快速幂】

    矩阵乘法一般不满足交换律!!所以快速幂里需要注意乘的顺序!! 其实不难,设f[i]为i的答案,那么f[i]=(f[i-1]w[i]+i)%mod,w[i]是1e(i的位数),这个很容易写成矩阵的形式, ...

  4. [BZOJ 2326] [HNOI2011] 数学作业 【矩阵乘法】

    题目链接:BZOJ - 2326 题目分析 数据范围达到了 10^18 ,显然需要矩阵乘法了! 可以发现,向数字尾部添加一个数字 x 的过程就是 Num = Num * 10^k + x .其中 k ...

  5. bzoj 2326: [HNOI2011]数学作业

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

  6. 2326: [HNOI2011]数学作业 - BZOJ

    首先是DP,分段DP(按位数讨论) 然后每一段构造出它对应的矩阵,用矩阵快速幂加速 type matrix=..,..]of int64; var n,m:int64; a,b,c,d:matrix; ...

  7. 【bzoj】2326 [HNOI2011]数学作业

    [题意]给定n和m,求1~n从高位到低位连接%m的结果.n=11时,ans=1234567891011%m.n<=10^18,m<=10^9. [算法]递推+矩阵快速幂 [题解] 考虑枚举 ...

  8. [ An Ac a Day ^_^ ] hdu 4565 数学推导+矩阵快速幂

    从今天开始就有各站网络赛了 今天是ccpc全国赛的网络赛 希望一切顺利 可以去一次吉大 希望还能去一次大连 题意: 很明确是让你求Sn=[a+sqrt(b)^n]%m 思路: 一开始以为是水题 暴力了 ...

  9. [HNOI2011]数学作业 --- 矩阵优化

    [HNOI2011]数学作业 题目描述: 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M ,要求计算\(Concatenate(1..N)\; Mod\; ...

随机推荐

  1. Unix/Linux环境C编程入门教程(16) LinuxMint CCPP开发环境搭建

    1. Linux Mint由Linux Mint Team团队于2006年开始发行,是一份基于 这个时候linuxmint安装完成,C/C++开发环境也配置完成,希望大家认真实践!

  2. CSV 客座文章系列: Pruffi 通过 Windows Azure 挖掘社交媒体的强大招聘潜能

    编辑人员注释:今天这篇文章由 Pruffi 创始人 Alena Vladimirskaya 和 Pruffi 的 CTO Alexander Ivanov 联合撰写,介绍了该公司如何使用 Window ...

  3. 移动开发之fastclick 点击穿透

    穿透(点穿)是在mobile各种浏览器上发生的常见的bug.可能是由click事件的延迟(300ms)或者事件冒泡导致 现象:在A页面中有个 btn1<或a标签>,在B页面中有个 btn2 ...

  4. redis存储session配制方法

    redis存储session配制方法需要三个模块: 1.redis 2.express-session 3.connect-redis 项目中的配置方法代码片段如下: 首先连接redis,连接redi ...

  5. HDU 3641 Treasure Hunting(阶乘素因子分解+二分)

    题目链接:pid=3641">传送门 题意: 求最小的 ( x! ) = 0 mod (a1^b1*a2^b2...an^bn) 分析: 首先吧a1~an进行素因子分解,然后统计下每一 ...

  6. USB OTG简单介绍

    1 引言 随着USB2.0版本号的公布,USB越来越流行,已经成为一种标准接口.如今,USB支持三种传输速率:低速(1.5Mb/s).全速(12Mb/s)和快速(480Mb/s),四种传输类型:块传输 ...

  7. css引入讲解及media

    引用Css的几种方式: 一.@import <style type="text/css" media="screen"> @import url(& ...

  8. Ninject简介(转)

    1.为什么要用Ninject? Ninject是一个IOC容器用来解决程序中组件的耦合问题,它的目的在于做到最少配置.其他的的IOC工具过于依赖配置文件,需要使用assembly-qualified名 ...

  9. Dearmweaver CS6 如何添加emmet 插件

     一.关于emmet插件 已经接触前端工具的小伙伴们早听说过这个插件的鼎鼎大名了吧,emmet可以说是前端工程师的利器,就连老牌dreamweaver 都可以支持,我们怎么好意思拒绝这个好东西呢? 有 ...

  10. 网页播放音频、视频文件——基于web的html 5的音乐播放器(转载)

    文章转载自:开源中国社区 [http://www.oschina.net] 想通过手机客户端(支持 Android.iPhone 和 Windows Phone)访问开源中国:请点这里 HTML5 是 ...