这道题目事实上就是在求有没有正环。与求负环的差别就是要不断的更新值,可是这个值要变大。而不是变小。

Currency Exchange
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 20441   Accepted: 7337

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies.
Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 

For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 

You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. 

Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative
sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description
of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103

For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102

Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations
will be less than 104

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <limits.h>
#include <ctype.h>
#include <string.h>
#include <string>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <deque>
#include <vector>
#include <set>
#include <map>
using namespace std;
const int INF = 99999999.9;
const int EM = 5555;
const int VM = 110;
int n,m,s;
double mon; struct Edge{
int u,v;
double com;
double exg;
}edge[EM<<1];
int cnt;
double dis[VM];
//double mon; /*void addage(int cu,int vu,double aa,double bb){
edge[cnt].from = cu;
edge[cnt].to = vu;
edge[cnt].com = aa;
edge[cnt].exg = bb;
cnt++;
}*/ int Bellman(){
int i,j,flag;
for(i=1;i<=n;i++){
dis[i] = 0.0;
}
dis[s] = mon;
for(i=1;i<n;i++){
bool flag = false;
for(j=0;j<cnt;j++){
int u = edge[j].u;
int v = edge[j].v;
double rate = edge[j].exg;
double cost = edge[j].com;
if(dis[v]<(dis[u]-cost)*rate)//求最大的路径
{
dis[v]=(dis[u]-cost)*rate;
flag=true;
}
//if(dis[edge[j].to] < (dis[edge[j].from]-edge[j].com)*edge[j].exg){
// dis[edge[j].to] = (dis[edge[j].from]-edge[j].com)*edge[j].exg;
// flag = 1;
//}
}
if(flag==false){
return false;
}
}
for(j=0; j<cnt; j++)
{
if(dis[edge[j].v]<(dis[edge[j].u]-edge[j].com)*edge[j].exg)//与传统的bell不一样,传统的bell是找负环。如今是找正环,正环无限松弛
return true;
}
return false;
} int main(){
//int n,m,s;
//double mon;
double rab,cab,rba,cba;
int marka,markb; while(~scanf("%d%d%d%lf",&n,&m,&s,&mon)){
cnt = 0;
//flag = 1;
while(m--){
scanf("%d%d%lf%lf%lf%lf",&marka,&markb,&rab,&cab,&rba,&cba);
//addage(marka,markb,a2,a1);
//addage(markb,marka,b2,b1);
edge[cnt].u=marka,edge[cnt].v=markb,edge[cnt].com=cab,edge[cnt].exg=rab;
cnt++;
edge[cnt].u=markb,edge[cnt].v=marka,edge[cnt].com=cba,edge[cnt].exg=rba;
cnt++;
}
if(Bellman()){
printf("YES\n");
}
else{
printf("NO\n");
}
} return 0;
}

Bellman 算法的更多相关文章

  1. 最短路径问题——bellman算法

    关于最短路径问题,最近学了四种方法——bellman算法.邻接表法.dijkstra算法和floyd-warshall算法. 这当中最简单的为bellman算法,通过定义一个边的结构体,存储边的起点. ...

  2. Bellman算法

    Bellman算法 当图有负圈的时候可以用这个判断最短路! [时间复杂度]O(\(nm\)) &代码: #include <bits/stdc++.h> using namespa ...

  3. 数据结构与算法--最短路径之Bellman算法、SPFA算法

    数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...

  4. Floyd 和 bellman 算法

    Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包. F ...

  5. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  6. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  7. 最短路径问题——dijkstra算法

    仅谈谈个人对dijkstra的理解,dijkstra算法是基于邻接表实现的,用于处理单源最短路径问题(顺便再提一下,处理单源最短路径问题的还有bellman算法).开辟一个结构体,其变量为边的终点和边 ...

  8. nyoj 115------城市平乱( dijkstra // bellman )

    城市平乱 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 南将军统领着N个部队,这N个部队分别驻扎在N个不同的城市. 他在用这N个部队维护着M个城市的治安,这M个城市 ...

  9. poj 3259 Wormholes spfa算法

    点击打开链接 Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25582   Accepted: 9186 ...

随机推荐

  1. java笔记之静态修饰附和单例设计模式

     第六天笔记 静态修饰符static: 一.static修饰成员变量: static用来修饰成员变量叫静态成员变量,没有static修饰的成员变量叫非静态成员变量 静态成员的访问方式: (1)   用 ...

  2. linux虚拟主机管理系统wdcp系列教程之三

    我们安装了网站服务管理系统wdcp之后,在使用过程中可能会出现这样或那样的疑问,下面给大家整理几点出来,方便大家学习.还有不懂的可以到wdlinux论坛寻找相关教程. 1.wdcp后台访问安全设置即限 ...

  3. telnet查看memcached运行参数说明

    在Linux/Windows系统中启动memcached的命令请查看http://weilingfeng98.iteye.com/admin/blogs/1741179 启动完memcached服务器 ...

  4. Carmack在QUAKE3中使用的计算平方根的函数

    // // Carmack在QUAKE3中使用的计算平方根的函数 // float CarmSqrt(float x){ union{ int intPart; float floatPart; } ...

  5. 【转】Java与C#语言级比较

    原文链接:http://www.harding.edu/fmccown/java_csharp_comparison.html Java 程序结构 C# package hello;public cl ...

  6. wcf 给net.tcp 加mex

    <?xml version="1.0" encoding="utf-8" ?><configuration>  <system.s ...

  7. Thinking In Java读书笔记--对象导论

    Thinking In Java读书笔记--对象导论[对象]服务提供者==>将对象看做一个服务提供者[程序员分类][类创造者]/[客户端程序员] [访问控制存在的原因?][1]客户端程序员无法触 ...

  8. oracle函数trunc的使用

    1.日期比较时精确到日,可以使用 TRUNC(sysdate,'dd')函数.函数支持格式有:yyyy MM  dd  hh Mi可以用   select TRUNC(sysdate,'yyyy') ...

  9. 多线程程序中fork导致的一些问题

    最近项目中,在使用多线程和多进程时,遇到了些问题. 问题描述:在多线程程序中fork出一个新进程,发现新的进程无法正常工作. 解决办法:将开线程的代码放在fork以后.也就是放在新的子进程中进行创建. ...

  10. study notes: high performance linux server programming

    1:linux网络API分为:socker地址API,socker基础API,网络信息API 1,socker地址API:包含IP地址和端口(ip, port).表示TCP通信的一端. 2,socke ...