最小生成树(prim和kruskal)

最小生成树的最优子结构性质

设一个最小生成树是T。如果选出一个T中的一条边,分裂成的两个树T1,T2依然是它们的点集组成的最小生成树。这可以用反证法来证。反着来推可以得出:如果有两个最小生成树T1,T2,将它们用它们之间的最短边连接起来,所得到的还是最小生成树。这个性质在关于(最小)生成树的状压dp里可以用。

prim算法

prim是在当前的最小生成树基础上,选择一条最短边作为新的最小生成树。将新加入的点看做一个最小生成树即可。用堆来加速的话,时间复杂度是\(O(mlogn)\)。缺点是空间占用大(因为堆)。由于prim算法需要知道当前点周围的边是什么,一般配合邻接表。

kruskal算法

kruskal算法和prim在思路上的唯一区别就是kruskal每次合并的是一整棵树,而不是一个点。如果用并查集,时间复杂度是\(O(mlogm)\),优点是代码简单,不过基本上跑不过prim。如果是稠密图时间相差两倍左右,稀疏图则能差到五倍以上。kruskal并不需要每个点周围的边,并且用邻接表做反而麻烦,所以一般选用前向星。

最小生成树(prim和kruskal)的更多相关文章

  1. poj1861 最小生成树 prim & kruskal

    // poj1861 最小生成树 prim & kruskal // // 一个水题,为的仅仅是回味一下模板.日后好有个照顾不是 #include <cstdio> #includ ...

  2. 图的最小生成树(Prim、Kruskal)

    理论: Prim: 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合.算法从U={u0}(u0∈V).TE={}开始.重复执行下列操作: 在所有u∈U,v∈V-U的边(u,v)∈E ...

  3. 最小生成树 Prim算法 Kruskal算法实现

    最小生成树定义 最小生成树是一副连通加权无向图中一棵权值最小的生成树. 在一给定的无向图 G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即,而 w(u, v) 代表此边的 ...

  4. 最小生成树Prim算法 Kruskal算法

    Prim算法(贪心策略)N^2 选定图中任意定点v0,从v0开始生成最小生成树 树中节点Va,树外节点Vb 最开始选一个点为Va,其余Vb, 之后不断加Vb到Va最短距离的点 1.初始化d[v0]=0 ...

  5. 最小生成树--Prim及Kruskal

    //prim算法#include<cstdio> #include<cmath> #include<cstring> #include<iostream> ...

  6. 最小生成树prim和kruskal模板

    prim: int cost[MAX_V][MAX_V]; //cost[u][v]表示边e=(u,v)的权值(不存在的情况下设为INF) int mincost[MAX_V]; //从集合X出发的每 ...

  7. 最小生成树Prim算法Kruskal算法

    Prim算法采用与Dijkstra.Bellamn-Ford算法一样的“蓝白点”思想:白点代表已经进入最小生成树的点,蓝点代表未进入最小生成树的点. 算法分析 & 思想讲解: Prim算法每次 ...

  8. 最小生成树 Prim和Kruskal

    感觉挺简单的,Prim和Dijkstra差不多,Kruskal搞个并查集就行了,直接上代码吧,核心思路都是找最小的边. Prim int n,m; int g[N][N]; int u,v; int ...

  9. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  10. 转载:最小生成树-Prim算法和Kruskal算法

    本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...

随机推荐

  1. hibernate 框架搭建

    Hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,它将POJO与数据库表建立映射关系,是一个全自动的orm框架,hibernate可以自动生成SQL语句,自 ...

  2. 机器学习 Logistic Regression

    Logistic Regression 之前我们讨论过回归问题,并且讨论了线性回归模型.现在我们来看看分类问题,分类问题与回归问题类似,只不过输出变量一个是离散的,一个是连续的.我们先关注二分类问题, ...

  3. Fiddler + 海马模拟器转包教程

    Fiddler + 海马模拟器转包教程 转包用来做什么不说了, 整理一下步骤  1.安装Fiddler 下载地址 http://pan.baidu.com/s/18me0A 2.设置Fiddler: ...

  4. freeMarker(十五)——XML处理指南之声明的XML处理

    学习笔记,选自freeMarker中文文档,译自 Email: ddekany at users.sourceforge.net 1.基本内容 因为XML处理的方法非常必要--这在前面章节中已经展示- ...

  5. 如何实现1080P延迟低于500ms的实时超清直播传输技术

    再来当一次技术搬运工,内容来自高可用框架,学霸君工程师袁荣喜的如何实现1080P延迟低于500ms的实时超清直播传输技术. 导语:视频直播是很多技术团队及架构师关注的问题,在实时性方面,大部分直播是准 ...

  6. HDU5446 Unknown Treasure(组合数膜合数-->Lucas+中国剩余定理)

    >On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown ...

  7. openfire存储中文字符乱码解决办法

    转载于: Xmpp问题总结:处理Openfire 中文乱码问题(2) openfire是一个非常不错的IM服务器,而且是纯Java实现,具有多个平台的版本,他的数据存储可以采用多种数据库,如MySQL ...

  8. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...

  9. Ruby 局部变量做block参数

    Ruby中使用yield语句调用block时可以带有参数,参数值见传送个相关联的block.如果传给block的参数是已经存在的局部变量,那么这些变量即为block的参数,他们的值可能会因block的 ...

  10. JSP介绍(4)--- JSP Cookie 处理

    Cookie是存储在客户机的文本文件,它们保存了大量轨迹信息. JSP脚本通过request对象中的getCookies()方法来访问这些cookie,这个方法会返回一个Cookie对象的数组. 通常 ...