此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。

PDF格式教材下载 Sequences and Series

本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution

Summary

  • Given a function $f$, the series $$\sum_{n=0}^\infty {f^{(n)}(0)\over n!}x^n$$ is called the Maclaurin series for $f$, or often just the Taylor series for $f$ centered around zero.
  • Given a function $f$, the series $$\sum_{n=0}^\infty {f^{(n)}(c)\over n!}(x-c)^n$$ is called the Taylor series for $f$ centered around $c$.
  • Taylor's Theorem
    Suppose that $f$ is defined on some open interval $I = (a-R,a+R)$ around $a$ and suppose the function $f$ is $(N+1)$-times differentiable on $I$, meaning that $f^{(N+1)}(x)$ exists for $x\in I$. Then for each $x \neq a$ in $I$ there is a value $z$ between $x$ and $a$ so that $$f(x) = \sum_{n=0}^N {f^{(n)}(a)\over n!}\,(x-a)^n + {f^{(N+1)}(z)\over (N+1)!}(x-a)^{N+1}.$$
  • Common functions: $$e^x=\sum_{n=0}^{\infty}{1\over n!}x^n=1+x+{x^2\over2!}+{x^3\over3!}+\cdots\cdots,\ \text{for all}\ x$$ $${1\over1-x}=\sum_{n=0}^{\infty}x^n=1+x+x^2+x^3+\cdots\cdots,\ \ \text{for}\ |x| < 1$$ $$\log(1+x)=\sum_{n=1}^{\infty}{(-1)^{n-1}\over n}x^n=x-{1\over2}x^2+{1\over3}x^3+\cdots\cdots,\ \ \text{for}\ -1 < x \leq 1$$ $$\sin x=\sum_{n=0}^{\infty}{(-1)^n\over(2n+1)!}x^{2n+1}=x-{x^3\over3!}+{x^5\over5!} +\cdots\cdots,\ \text{for all}\ x$$ $$\cos x=\sum_{n=0}^{\infty}{(-1)^n\over(2n)!}x^{2n}=1-{x^2\over2!}+{x^4\over4!} +\cdots\cdots,\ \text{for all}\ x$$

Exercises 7.1

For each function, find the Taylor series centered at $c$, and the radius of convergence.

1. $\cos x$ around $c = 0$  

Solution: $$f(0)=\cos x\big|_{x=0}=1$$ $$f'(0)=-\sin x\big|_{x=0}=0$$ $$f''(0)=-\cos x\big|_{x=0}=-1$$ $$f'''(0)=\sin x\big|_{x=0}=0$$ $$f^{(4)}(0)=\cos x\big|_{x=0}=1$$ $$\cdots\cdots\cdots\cdots$$ The Taylor series is $$\cos x=1-{1\over2!}x^2+{1\over4!}x^4+\cdots=\sum_{n=0}^{\infty}{(-1)^n\over(2n)!}x^{2n}$$ And the radius of convergence is $${1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{(2n)!\over(2n+2)!}=\lim_{n\to\infty}{1\over(2n+2)(2n+1)}=0$$ Thus $R=\infty$.

2. $e^x$ around $c = 0$  

Solution: $$f(0)=e^x\big|_{x=0}=1$$ $$f'(0)=e^x\big|_{x=0}=1$$ $$\cdots\cdots\cdots\cdots$$ The Taylor series is $$e^x=1+x+{1\over2!}x^2+\cdots=\sum_{n=0}^{\infty}{x^n\over n!}$$ The radius of convergence is $${1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{n!\over(n+1)!}=\lim_{n\to\infty}{1\over n+1}=0$$ Thus $R=\infty$.

3. $1/x$ around $c=5$  

Solution: $$f(5)={1\over x}\big|_{x=5}={1\over5}$$ $$f'(5)=-{1\over x^2}\big|_{x=5}=-{1\over25}$$ $$f''(5)={2\over x^3}\big|_{x=5}={2\over125}$$ $$f'''(5)={-6\over x^4}\big|_{x=5}={-6\over625}$$ $$\cdots\cdots\cdots\cdots$$ The Taylor series is $${1\over x}={1\over5}-{1\over25}(x-5)+{1\over125}(x-5)^2-{1\over625}(x-5)^3+\cdots=\sum_{n=0}^{\infty}{(-1)^n\over5^{n+1}}(x-5)^n$$ The radius of convergence is $${1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{5^{n+1}\over5^{n+2}}={1\over5}$$ Thus $R=5$.

4. $\log x$ around $c=1$  

Solution: $$f(1)=\log x\big|_{x=1}=0$$ $$f'(1)={1\over x}\big|_{x=1}=1$$ $$f''(1)={-1\over x^2}\big|_{x=1}=-1$$ $$f'''(1)={2\over x^3}\big|_{x=1}=2$$ $$f^{(4)}(1)={-6\over x^4}\big|_{x=1}=-6$$ $$\cdots\cdots\cdots\cdots$$ The Taylor series is $$\log x=(x-1)-{1\over2}(x-1)^2+{1\over3}(x-1)^3-{1\over4}(x-1)^4+\cdots=\sum_{n=1}^{\infty}{(-1)^{n-1}\over n}(x-1)^n$$ The radius of convergence is $${1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{n\over n+1}=1$$ Thus $R=1$.

5. $\log x$ around $c=2$  

Solution: $$f(2)=\log x\big|_{x=2}=\log2$$ $$f'(2)={1\over x}\big|_{x=2}={1\over2}$$ $$f''(2)={-1\over x^2}\big|_{x=2}=-{1\over4}$$ $$f'''(2)={2\over x^3}\big|_{x=2}={1\over4}$$ $$f^{(4)}(2)={-6\over x^4}\big|_{x=2}=-{3\over8}$$ $$\cdots\cdots\cdots\cdots$$ The Taylor series is $$\log x=\log2+{1\over2}(x-2)-{1\over8}(x-2)^2+{1\over24}(x-2)^3-{1\over64}(x-2)^4\cdots=\log2+\sum_{n=1}^\infty {(-1)^{n-1}\over n\cdot2^n}(x-2)^n$$ The radius of convergence is $${1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{n\cdot2^n\over(n+1)\cdot2^{n+1}}={1\over2}$$ Thus $R=2$.

6. $1/x^2$ around $c=1$  

Solution: $$f(1)={1\over x^2}\big|_{x=1}=1$$ $$f'(1)={-2\over x^3}\big|_{x=1}=-2$$ $$f''(1)={6\over x^4}\big|_{x=1}=6$$ $$f'''(1)={-24\over x^5}\big|_{x=1}=-24$$ $$\cdots\cdots\cdots\cdots$$ The Taylor series is $${1\over x^2}=1-2(x-1)+3(x-1)^2-4(x-1)^3+\cdots=\sum_{n=0}^{\infty}(-1)^n(n+1)(x-1)^n$$ The radius of convergence is $${1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{n+2\over n+1}=1$$ Thus $R=1$.

7. $1/\sqrt{1-x}$ around $c = 0$

Solution: $$f(0)=(1-x)^{-{1\over2}}\big|_{x=0}=1$$ $$f'(0)={1\over2}(1-x)^{-{3\over2}}\big|_{x=0}={1\over2}$$ $$f''(0)={3\over4}(1-x)^{-{5\over2}}\big|_{x=0}={3\over4}={1\cdot3\over2^2}$$ $$f'''(0)={15\over8}(1-x)^{-{7\over2}}\big|_{x=0}={15\over8}={1\cdot3\cdot5\over2^3}$$ $$f^{(4)}(0)={105\over16}(1-x)^{-{9\over2}}\big|_{x=0}={105\over16}={1\cdot3\cdot5\cdot7\over2^4}$$ $$\cdots\cdots\cdots\cdots$$ The Taylor series is $${1\over\sqrt{1-x}}=1+{1\over2}x+{3\over8}x^2+{5\over16}x^3 +{35\over128}x^4+\cdots=1+\sum_{n=1}^{\infty}{1\cdot3\cdot5\cdots\cdot(2n-1)\over2^n\cdot n!}x^n$$ $$=1+\sum_{n=1}^{\infty}{(2n-1)!\over2^n\cdot n!\cdot2\cdot4\cdots\cdot(2n-2)}x^n$$ $$=1+\sum_{n=1}^{\infty}{(2n-1)!\over2^{2n-1}\cdot n!\cdot(n-1)!}x^n$$ The radius of convergence is $${1\over R}=\lim_{n\to\infty}{|a_{n+1}|\over|a_n|}=\lim_{n\to\infty}{(2n+1)!\over2^{2n+1}\cdot(n+1)!\cdot n!}\cdot{2^{2n-1}\cdot n!\cdot(n-1)!\over(2n-1)!}=\lim_{n\to\infty}{(2n+1)\cdot2n\over4\cdot(n+1)n}=1$$ Thus $R=1$.

8. Find the first four terms of the Taylor series for $\tan x$ centered at zero. By "first four terms" I mean up to and including the $x^3$ term.

Solution: $$f(0)=\tan x\big|_{x=0}=0$$ $$f'(0)=\sec^2 x\big|_{x=0}=1$$ $$f''(0)=2\sec^2 x\cdot\tan x\big|_{x=0}=0$$ $$f'''(0)=2\cdot(2\sec x\cdot\tan x\cdot\sec x\cdot\tan x+\sec^2 x\cdot\sec^2 x)\big|_{x=0}=2$$ Thus the first four terms are $$\tan x=x+{x^3\over3}$$

9. Use a combination of Taylor series and algebraic manipulation to find a series centered at zero for $x\cos (x^2)$.  

Solution:

We know $$\cos x=\sum_{n=0}^{\infty}{(-1)^n\over(2n)!}x^{2n}$$ So $$\cos x^2=\sum_{n=0}^{\infty}{(-1)^n\over(2n)!}x^{4n}$$ Thus $$x\cos x^2=\sum_{n=0}^{\infty}{(-1)^n\over(2n)!}x^{4n+1}$$

10. Use a combination of Taylor series and algebraic manipulation to find a series centered at zero for $xe^{-x}$.

Solution:

We know $$e^x=\sum_{n=0}^{\infty}{x^n\over n!}$$ So $$e^{-x}=\sum_{n=0}^{\infty}{(-1)^n\over n!}x^n$$ Thus $$xe^{-x}=\sum_{n=0}^{\infty}{(-1)^n\over n!}x^{n+1}$$

Exercises 7.2

1. Find a polynomial approximation for $\cos x$ on $[0,\pi]$, accurate to $\pm 10^{-3}$.

Solution:

By Taylor's theorem, we have $$\cos x=\sum_{n=0}^N {f^{(n)}(a)\over n!}\,x^n +R_n(x)$$ where $R_n(x)={f^{(N+1)}(z)\over (N+1)!}x^{N+1}$. So we have $$|R_n(x)|=\big|{f^{(N+1)}(z)\over (N+1)!}x^{N+1}\big| < 0.001$$ Since $|f^{(N+1)}(z)|\leq1$ and $x\in [0, \pi]$, we have $$\big|{x^{N+1}\over(N+1)!}\big|\leq\big|{{\pi}^{N+1}\over(N+1)!}\big| < 0.001$$ Computing in R:

f = function(x) pi^(x + 1) / factorial(x + 1)
for (i in 0:100) {
if (f(i) < 1 / 1000) {
print(i)
break
}
}
# [1] 12

That is, the polynomial approximation is $$\cos x=1-{x^2\over2}+{x^4\over24}- {x^6\over720}+\cdots+{x^{12}\over12!}$$

2. How many terms of the series for $\log x$ centered at 1 are required so that the guaranteed error on $[1/2,3/2]$ is at most $10^{-3}$? What if the interval is instead $[1,3/2]$?

Solution:

First, calculate the Taylor series of $\log x$ centered at 1: $$f(1)=\log x\big|_{x=1}=0$$ $$f'(1)={1\over x}\big|_{x=1}=1$$ $$f''(1)={-1\over x^2}\big|_{x=1}=-1$$ $$f'''(1)={2\over x^3}\big|_{x=1}=2$$ $$f^{(4)}(1)={-6\over x^4}\big|_{x=1}=-6$$ $$\cdots\cdots\cdots$$ $$f^{(n)}(1)={(-1)^{n-1}\cdot(n-1)!\over x^n}\big|_{x=1}=(-1)^{n-1}\cdot(n-1)!$$ Thus $$\log x=\sum_{n=1}^{\infty}{(-1)^{n-1}\over n}(x-1)^n$$ By Taylor's theorem, we have $$R_{n}(x)=\big|{f^{(N+1)}(z)\over(N+1)!}(x-1)^{N+1}\big| < 0.001$$ where $x\in[{1\over2},{3\over2}]$, so $x-1\in[-{1\over2}, {1\over2}]$, we hope to maximize $R_n(x)$, that is $$R_n(x) \leq \big|{(-1)^{N}\cdot N!\over(N+1)!\cdot ({1\over2})^{N+1}}\cdot({1\over2})^{N+1}\big|={1\over N+1} < 0.001\Rightarrow N=1000$$ If the interval is $[1, {3\over2}]$, similarly we have $x-1\in[0, {1\over2}]$, and $$R_n(x) \leq \big|{(-1)^{N}\cdot N!\over(N+1)!\cdot 1^{N+1}}\cdot({1\over2})^{N+1}\big|={({1\over2})^{N+1}\over N+1} < 0.001\Rightarrow N=7$$ R code:

f = function(x) 0.5^(x + 1) / (x + 1)
for (i in 0:1e7) {
if (f(i) < 0.001) {
print(i)
break
}
}
# [1] 7

3. Find the first three nonzero terms in the Taylor series for $\tan x$ on $[-\pi/4,\pi/4]$, and compute the guaranteed error term as given by Taylor's theorem. (You may want to use Sage or a similar aid.)

Solution: $$f(x)=\tan x\big|_{x=0}=0$$ $$f'(x)=\sec^2 x\big|_{x=0}=1$$ $$f''(x)=2\tan x\sec^2 x\big|_{x=0}=0$$ $$f'''(x)=2\sec^4x+4\tan^2x\sec^2x\big|_{x=0}=2$$ $$f^{(4)}(x)=16\tan x\sec^4x+8\tan^3x\sec^2x\big|_{x=0}=0$$ $$f^{(5)}(x)=16\sec^6x+64\tan^2x\sec^4x+24\tan^2x\sec^4x+16\tan^4x\sec^2x\big|_{x=0}=16$$ Additionally, we need to calculate the $7^{\text{th}}$ derivative of $\tan x$: $$f^{(6)}(x)=272\sec^6x\tan x+416\sec^4x\tan^3x+ 32\sec^2x\tan^5x$$ $$f^{(7)}(x)=272\sec^8x+2880\tan^2x\sec^6x +1824\tan^4x\sec^4x+64\tan^6x\sec^2x$$ Thus the Taylor series is $$\tan x=x+{x^3\over3}+{2x^5\over15}+R_{n}(x)$$ where $R_n(x)={f^{(N+1)}(z)\over(N+1)!}x^{N+1}$. Since $x\in[-{\pi\over4}, {\pi\over4}]$, and both of $\tan x$ and $\sec x$ are increasing on $[0, {\pi\over4}]$. We have $$R_n(x) \leq \big|{f^{(7)}({\pi\over4})\over7!}\cdot({\pi\over4})^7\big|={34816\over7!}\cdot({\pi\over4})^7\doteq1.273437$$ Thus the error is $\pm1.273437$.

4. Prove: For all real numbers $x$, $$\cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n}$$

Solution:

By Taylor's theorem, we have $$\cos x=\sum_{n=0}^{N}{f^{(n)}(0)\over n!}x^n+R_n(x)$$ where $R_n(x)={f^{(N+1)}(z)\over(N+1)!}x^{N+1}$. We need to prove that $$\lim_{n\to\infty}R_n(x)=0$$ Since the derivative of $\cos x$ is no larger than 1. So $$\big|R_n(x)\big|=\big|{f^{(N+1)}(z)\over(N+1)!}x^{N+1}\big|\leq\big|{x^{N+1}\over(N+1)!}\big|$$ And $$\lim_{n\to\infty}{d^n\over n!}=0$$ for any $d$ since $\sum_{n=0}^{\infty}{x^n\over n!}$ converges for all $x$ (by ratio test can obtain that $1/R=0$). Thus the right hand of the above inequality converges to 0 when $N$ is closing to $\infty$. That is $$\lim_{n\to\infty}R_n(x)=0$$ Therefore, $\cos x$ is euqal to its Taylor series: $$\cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n}$$

5. Prove: For all real numbers $x$, $$e^x = \sum_{n=0}^\infty \frac{1}{n!} x^{n}$$

Solution:

This proof is quite similar to the above one. We also need to prove that $$\lim_{n\to\infty}R_n(x)=0$$ where $$\big|R_n(x)\big|=\big|{e^{N+1}\over(N+1)!}x^{N+1}\big|$$ Note that the right hand converges to 0 when $N$ is closing to $\infty$. Thus $$e^x = \sum_{n=0}^\infty \frac{1}{n!} x^{n}$$

Additional Exercises

1. Find the first four terms of Taylor series for $$f(x)=e^{\tan x}-1$$ centered at $a=0$.

Solution: $$f(0)=e^{\tan x}-1\big|_{x=0}=0$$ $$f'(0)=e^{\tan x}\cdot\sec^2x\big|_{x=0}=1$$ $$f''(0)=e^{\tan x}\cdot(\sec^4x+2\sec^2x\tan x)\big|_{x=0}=1$$ $$f'''(0)=4e^{\tan x}\sec^2x\tan^2x+6e^{\tan x}\sec^4x\tan x+e^{\tan x}\sec^6x+2e^{\tan x}\sec^4x\big|_{x=0}=3$$ Thus its Taylor series is $$0+x+{1\over2}x^2+{1\over2}x^3+\cdots$$

2. By finding the Taylor series around x=2, rewrite the polynomial $p(x) = -4 \, x^{3} - 3 \, x^{2} - 3 \, x - 1$ as a polynomial in $x-2$.

Solution: $$p(2)=-4x^3-3x^2-3x-1\big|_{x=2}=-51$$ $$p'(2)=-12x^2-6x-3\big|_{x=2}=-63$$ $$p''(2)=-24x-6\big|_{x=2}=-54$$ $$p'''(2)=-24\big|_{x=2}=-24$$ Thus its Taylor series is $$p(x)=p(2)+{p'(2)\over1}(x-2)+{p''(2)\over2!}(x-2)^2+{p'''(2)\over3!}(x-2)^3$$ $$=-51-63(x-2)-27(x-2)^2-4(x-2)^3$$

3. By considering Taylor series, evaluate $$\lim_{x \to 0} \displaystyle\frac{{\left(\sin\left(3 \, x\right) + \tan\left(3 \, x\right)\right)}^{2}}{{\left(e^{x} - 1\right)} \log\left(x + 1\right)}.$$

Solution: $$\sin3x=3x-{27x^3\over6}+O(x^5)$$ $$\tan3x=3x+9x^3+O(x^5)$$ $$e^x-1=x+{x^2\over2}+{x^3\over6}+O(x^4)$$ $$\log(x+1)=x-{1\over2}x^2+{1\over3}x^3+O(x^4)$$ So plug in the above results we have $$\lim_{x \to 0} f(x)=\lim_{x\to0}{(6x+{9\over2}x^3+O(x^5))^2\over (x+{x^2\over2}+{x^3\over6}+O(x^4))(x-{1\over2}x^2+{1\over3}x^3+O(x^4))}=\lim_{x\to0}{36x^2+O(x^4)\over x^2+O(x^3)}=36$$

4. Estimate $\sin1$ within $1/40$.

Solution: $$\sin x=\sum_{n=0}^{N}{(-1)^n\over(2n+1)!}x^{2n+1}+R_{n}(x)=x-{1\over3!}x^3+{1\over5!}x^5+\cdots+R_{n}(x)$$ $$\Rightarrow \big|R_n(x)\big|=\big|{f^{(N+1)}(z)\over(2N+3)!}x^{2N+3}\big|\leq{x^{2N+3}\over(2N+3)!}={1\over(2N+3)!}\leq{1\over40}$$ Thus $N=1$ is enough. And the estimation is $$\sin1=1-{1\over3!}={5\over6}$$

5. Consider the polynomial $p(x) = 16 \, x^{5} - 20 \, x^{3} + 5 \, x$. Use the Taylor series for $\cos x$ to find a Taylor series for $f(x) = p(\cos x)$ around the point $x=0$ (up to $x^2$ term).

Solution: $$\cos x=\sum_{n=0}^{\infty}{(-1)^n\over(2n)!}x^{2n}=1-{x^2\over2}+{x^4\over4!}+\cdots$$ $$\Rightarrow p(\cos x)=16(1-{x^2\over2}+O(x^4))^5-20(1-{x^2\over2}+O(x^4))^3 +5(1-{x^2\over2}+O(x^4)$$ $$=16(1-{5\over2}x^2+O(x^4))-20(1-{3\over2}x^2+O(x^4)) +5-{5\over2}x^2+O(x^4)$$ $$=1-{25\over2}x^2+O(x^4)$$

MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series的更多相关文章

  1. MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  2. MOOCULUS微积分-2: 数列与级数学习笔记 4. Alternating series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  3. MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  4. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  5. MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  6. MOOCULUS微积分-2: 数列与级数学习笔记 2. Series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  7. MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  8. python学习笔记—DataFrame和Series的排序

    更多大数据分析.建模等内容请关注公众号<bigdatamodeling> ################################### 排序 ################## ...

  9. 《Java学习笔记(第8版)》学习指导

    <Java学习笔记(第8版)>学习指导 目录 图书简况 学习指导 第一章 Java平台概论 第二章 从JDK到IDE 第三章 基础语法 第四章 认识对象 第五章 对象封装 第六章 继承与多 ...

随机推荐

  1. Autofac中的属性注入功能使用

    使用依赖注入容器时,大部分都是使用构造函数来注入或者是xml配置文件.也有很多支持属性注入.Autofac就是其中一个. 1 为什么要有属性注入? 对于一些使用特频繁的类或者方法,很多类都会用到,那么 ...

  2. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  3. DOM 概况

    DOM(文档对象模型)是针对 HTML 和 XML 文档的一个API(应用程序编程接口).DOM 描绘了一个层次化的节点树,允许开发人员添加.移除和修改页面的某一部分. 层次节点 DOM可以将任何 H ...

  4. Github优秀java项目集合(中文版) - 涉及java所有的知识体系

    Java资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-java 就是 akullpp 发起维护的 Java 资源列表,内容 ...

  5. Bootstrap系列 -- 40. 导航条二级菜单

    在导航条中添加二级菜单也非常简单 <div class="navbar navbar-default" role="navigation"> < ...

  6. 在SQL Server 2012中实现CDC for Oracle

    在上篇在SSIS 2012中使用CDC(数据变更捕获)中,介绍了如何在SSIS 2012中使用CDC,本文在此基础上介绍,如何通过Attunity提供的Change Data Capture Desi ...

  7. SQL2008R2 不支持用该后端版本设计数据库关系图或表

    向下不兼容. 要么安装SQL2012,要么把SQL2012数据库通过脚本转成2008

  8. make the innerText in the html element can not be selected

    approach style="-moz-user-select:none;" onselectstart="javascript:return false;" ...

  9. jq mobile非ajax加载,ready执行两次

    jqm只有通过ajax加载的页面才只执行一次ready(正常情况) 页面刷新(同非ajax加载的页面)都会执行两次ready,包括pageinit和pageshow事件也是如此. 两种避免的方法是: ...

  10. Sublime Text 3前端开发常用优秀插件介绍

    . 首页 博客园 联系我 前言:关于Sublime Text 3. Package Control插件管理. Package Control使用方法/安装Emmet插件. Emmet插件. JsFor ...