https://zhuanlan.zhihu.com/p/612752963?utm_id=0

最近,FacebookResearch 开源了他们最新的大规模语言模型 LLaMA,包含从 7B 到 65B 的参数范围,训练使用多达 14,000 亿 tokens 语料。其中,LLaMA-13B 在大部分基准测评上超过了 GPT3(175B),与目前最强的语言模型 Chinchilla-70B 和 PaLM-540B 相比,LLaMA-65B 也具有竞争力。因此,LLaMA 可能是目前公开模型权重中效果最好的语言模型。

论文:https://arxiv.org/abs/2302.13971

代码:https://github.com/facebookresearch/llama

在论文中,作者针对常识推理、问答、数学推理、代码生成、语言理解等能力对 LLaMA 进行了评测。结果显示,LLaMA 以相对少量的参数获得了媲美超大模型的效果,这对 NLP 社区的研究者们更加友好,因为它可以在单个 GPU 上运行。开源代码提供 LLaMA 的文本生成示例,可以直接用于一些 Zero/Few-Shot Learning 任务。也有许多用户关心如何使用自己的数据微调或增量训练LLaMA模型,然而Facebook目前还没有提供对应的训练代码。在本文中,我们介绍如何基于 TencentPretrain 预训练框架训练 LLaMA 模型。

TencentPretrain 是 UER-py 预训练框架的多模态版本,支持 BERT、GPT、T5、ViT、Dall-E、Speech2Text 等模型,支持文本、图像和语音模态预训练及下游任务。TencentPretrain 基于模块化设计,用户可以通过模块组合的方式构成各种模型,也可以通过复用已有的模块进行少量修改来实现新的模型。例如,LLaMA 的模型架构基于 Transformer 有三项改动:

  1. 前置 normalization [GPT3]: 在每个 transformer 层输入之前进行标准化,以提高训练稳定性。标准化层使用RMSNorm。
  2. SwiGLU 激活函数[PaLM]:在 Feedforward 层使用 Gated Linear Units [T5] 以及 SwiGLU 激活函数。
  3. 旋转位置编码[GPTNeo]:移除了 Embedding 层的绝对位置编码,并在每个 transformer 层增加旋转位置编码(RoPE)。

得益于模块化特性,我们在 TencentPretrain 中基于 GPT2 模型的已有模块,仅添加约 100 行代码就能实现以上三个改动从而训练 LLaMA 模型。具体的使用步骤为:

  1. 克隆 TencentPretrain 项目,并安装依赖:PyTorch、DeepSpeedSentencePiece
git clone https://github.com/Tencent/TencentPretrain.git

2. 下载 LLaMA 模型权重(7B),可以向 FacebookResearch 申请模型,或者从 Huggingface 社区获取;将模型权重转换为 TencentPretrain 格式

cd TencentPretrain
python3 scripts/convert_llama_to_tencentpretrain.py --input_model_path $LLaMA_7B_FOLDER/consolidated.00.pth --output_model_path models/llama-7b.bin --layers_num 32

3. 调整配置文件

将 tencentpretrain/utils/constants.py 文件中 L4: special_tokens_map.json 修改为 llama_special_tokens_map.json

4. 语料预处理:使用项目自带的语料作为演示,也可以使用相同格式的语料进行替换

预训练语料下载

python3 preprocess.py --corpus_path corpora/book_review.txt --spm_model_path $LLaMA_7B_FOLDER/tokenizer.model \
--dataset_path dataset.pt --processes_num 8 --data_processor lm

5. 启动训练,以8卡为例

deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json \
--pretrained_model_path models/llama-7b.bin \
--dataset_path dataset.pt --spm_model_path $LLaMA_7B_FOLDER/tokenizer.model \
--config_path models/llama/7b_config.json \
--output_model_path models/output_model.bin \
--world_size 8 --learning_rate 1e-4 \
--data_processor lm --total_steps 10000 --save_checkpoint_steps 2000 --batch_size 24

启动训练后,可以看到模型的 loss 和准确率:



模型推理

类似 facebookresearch/llama ,TencentPretrain 也提供语言模型推理代码。例如,使用单卡进行 LLaMA-7B 推理,prompt 在文件beginning.txt 中:

python3 scripts/generate_lm.py --load_model_path models/llama-7b.bin --spm_model_path $LLaMA_7B_FOLDER/tokenizer.model \
--test_path beginning.txt --prediction_path generated_sentence.txt \
--config_path models/llama/7b_config.json

开源的 LLaMA 模型在预训练阶段主要基于英语训练,也具有一定的多语言能力,然而由于它没有将中文语料加入预训练,LLaMA在中文上的效果很弱。利用 TencentPretrain 框架,用户可以使用中文语料增强 LLaMA 的中文能力,也可以将它微调成垂直领域模型。

目前,TencentPretrain 只支持 LLaMA-7B 训练,我们将会持续改进以支持所有规模的 LLaMA 模型训练/微调并分享更多实验结果。欢迎大家分享使用 TencentPretrain 训练的模型权重或提交 Pull Request 贡献代码。

其他预训练模型权重例如中文 BERT、GPT、T5 等可以在我们的 Model Zoo 或者 Huggingface 仓库下载。


更新:LLaMA中文权重以及对话模型

【转帖】训练中文LLaMA大规模语言模型的更多相关文章

  1. 使用 DL4J 训练中文词向量

    目录 使用 DL4J 训练中文词向量 1 预处理 2 训练 3 调用 附录 - maven 依赖 使用 DL4J 训练中文词向量 1 预处理 对中文语料的预处理,主要包括:分词.去停用词以及一些根据实 ...

  2. Tesseract训练中文字体识别

    注:目前仅说明windows下的情况 前言 网上已经有大量的tesseract的识别教程,但是主要有两个缺点: 大多数比较老,有部分内容已经不适用. 大部分只是就英文的训练进行探索,很少针对中文的训练 ...

  3. 使用word2vec训练中文词向量

    https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词 ...

  4. word2vec训练中文模型

    --  这篇文章是一个学习.分析的博客 --- 1.准备数据与预处理 首先需要一份比较大的中文语料数据,可以考虑中文的维基百科(也可以试试搜狗的新闻语料库).中文维基百科的打包文件地址为 https: ...

  5. Windows下基于python3使用word2vec训练中文维基百科语料(二)

    在上一篇对中文维基百科语料处理将其转换成.txt的文本文档的基础上,我们要将为文本转换成向量,首先都要对文本进行预处理 步骤四:由于得到的中文维基百科中有许多繁体字,所以我们现在就是将繁体字转换成简体 ...

  6. tesserat训练中文备忘录

    最近用OCR识别身份证,用的tesseract引擎.但是google自带的中文库是在太慢了,尤其是对于性别.民族这样结果可以穷举的特征信息而言,完全可以自己训练字库.自己训练字库不仅可以提高识别速度, ...

  7. [转帖]Linux内核为大规模支持100Gb/s网卡准备好了吗?并没有

    Linux内核为大规模支持100Gb/s网卡准备好了吗?并没有 之前用 千兆的机器 下载速度 一般只能到 50MB 左右 没法更高 万兆的话 可能也就是 200MB左右的速度 很难更高 不知道后续的服 ...

  8. Windows下基于python3使用word2vec训练中文维基百科语料(一)

    在进行自然语言处理之前,首先需要一个语料,这里选择维基百科中文语料,由于维基百科是 .xml.bz2文件,所以要将其转换成.txt文件,下面就是相关步骤: 步骤一:下载维基百科中文语料 https:/ ...

  9. Windows下基于python3使用word2vec训练中文维基百科语料(三)

    对前两篇获取到的词向量模型进行使用: 代码如下: import gensim model = gensim.models.Word2Vec.load('wiki.zh.text.model') fla ...

  10. 预训练语言模型整理(ELMo/GPT/BERT...)

    目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训 ...

随机推荐

  1. DataX快速入门

    DataX3.0快速入门 一.DataX3.0概览 DataX是阿里云DataWorks数据集成的开源版本,在阿里巴巴集团内部被广泛使用的离线数据同步工具/平台.解决了数据库之中的数据同步.迁移问题, ...

  2. CUDA C编程权威指南:1.3-CUDA基础知识点梳理

      主要整理了N多年前(2013年)学习CUDA的时候开始总结的知识点,好长时间不写CUDA代码了,现在LLM推理需要重新学习CUDA编程,看来出来混迟早要还的. 1.CUDA数组 解析:CUDA数组 ...

  3. 面试官问我:线程锁导致的kafka客户端超时,如何解决?

    本文分享自华为云社区<线程锁导致的kafka客户端超时问题>,作者: 张俭 . 问题背景 有一个环境的kafka client发送数据有部分超时,拓扑图也非常简单 定位历程 我们先对客户端 ...

  4. 论文复现丨基于ModelArts实现Text2SQL

    摘要:该论文提出了一种基于预训练 BERT 的新神经网络架构,称为 M-SQL.基于列的值提取分为值提取和值列匹配两个模块. 本文分享自华为云社区<基于ModelArts实现Text2SQL&g ...

  5. 政企上云网络适配复杂,看华为云Stack有妙招

    摘要:政企数据中心部署云资源池后,网络架构变得复杂,如何在数据中心内无缝集成云资源池.如何协同云上业务和云下传统业务的互通.如何解决云上业务的安全合规等新问题出现. 本文分享自华为云社区<[华为 ...

  6. 火山引擎DataTester:如何使用A/B测试优化全域营销效果

      当前,营销技术步入了全渠道.全周期的全域时代,随着广泛的数据积累,数据科学技术在营销领域发挥着越来越重要的作用,从消费者人群洞察到智能化信息广告投放,营销的提效让企业得以在转化的每个环节提升影响力 ...

  7. Python MatplotlibDeprecationWarning Matplotlib 3.6 and will be removed two minor releases later

    百度飞桨(PaddlePaddle)-数字识别 在Pycharm中使用Matplotlib中的pyplot时,运行代码报错: MatplotlibDeprecationWarning: Support ...

  8. 手写签名-微信小程序

    index.wxml <canvas type="2d" id="canvas" bindtouchmove="move" bindt ...

  9. Java 模拟数据库连接池的实现

    前面学习过等待 - 通知机制,现在我们在其基础上添加一个超时机制,模拟从连接池中获取.使用和释放连接的过程.客户端获取连接的过程被设定为等待超时模式,即如果在 1000 毫秒内无法获取到可用连接,将会 ...

  10. Hugging News #0609: 最新代码生成模型 StarCoder+ 和 StarChat Beta 重磅发布!

    每一周,我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新,包括我们的产品和平台更新.社区活动.学习资源和内容更新.开源库和模型更新等,我们将其称之为「Hugging Ne ...