深度估计问题

  从输入的单目或双目图像,计算图像物体与摄像头之间距离(输出距离图),双目的距离估计应该是比较成熟和完善,但往单目上考虑主要还是成本的问题,所以做好单目的深度估计有一定的意义。单目的意思是只有一个摄像头,同一个时间点只有一张图片。就象你闭上一只眼睛,只用一只眼睛看这个世界的事物一样,距离感也会同时消失。

深度估计与语义分割的区别,及监督学习的深度估计问题

  深度估计与语义分割有一定的联系,但也有一些区别。

  •   图像的语义分割是识别每个像素的类别,不管这个像素出现在图像的那个位置,是一个分类任务。
  •   而深度估计是识别每个像素与当前摄像头的距离,相同的车出现在图像的不同位置,其距离有可能不一样,是一个回归任务。  

  在深度估计上直接使用语义分割的方案,是可以达到一定的效果,但因为以上的区别,所以要把深度估计做好还是值得探讨。另外,  

  深度估计有监督学习的方案,但深度估计的监督学习存在两个问题:

  1.  监督学习所需要的label,制作上的代价比较大,不利于把方案应用到更多情境或验证;
  2.  如果以激光雷达的数据作为label,但激光雷达的探测距离比视觉近,一些超越探测距离的区域无法训练。

  基于这些问题,本论文提出一种不需要真实深度label的自监督方法。

基本原理

  作者巧妙地利用SFM(Structure from motion)原理同时训练DepthNet(深度估计网络)和PoseNet(姿态估计网络),使用它们的输出重构图像$\hat I$与原图像$I$进行比较,免除真实深度label的需要。

  选择从时间上连续的三张图像,分别是$I_{t-1}$,$I_t$,$I_{t+1}$。DepthNet学习$I_t$的深度并输出深度图$\hat D_t$,PoseNet从$I_t$分别到$I_{t-1}$和$I_{t+1}$学习转换矩阵$\hat T_{t \to t-1}$和$\hat T_{t \to t+1}$,如上图,图像$I_t$里的$p$点可以通过对应的深度值$\hat D_t(p)$和转换矩阵$\hat T_{t \to t-1}$投影到$I_{t-1}$上对应位置$p_{t-1}$。

    $p_s \sim K \hat T_{t \to s} \hat D_t(p_t)K^{-1}p_t$

  其中,$K$是摄像头的内参矩阵(出厂时进行标定或自己标定)。

  投影到的位置后使用相邻像素进行双线性插值进行图像重建,以光度重建缺失同时训练两个网络。

    $L_{vs} = \sum_s{\sum_p | I_t(p) - \hat I_s(p)|}$

局限性

应用在视频时,方案包含了三个假设前提

1. 依赖于SFM,如果图像里的物体是“静止”,其实是该物体和本身的运动速度一致,那个该物体在不同时间上的视图里,不会发生变化,固“静止”。

2. 不考虑遮挡,是先把要处理的问题简单化。

3. 重建损失的前提。

局限性解决

1. 解决静止和遮挡

  增加一个可解释性预测网络,该网络为每个目标-源对输出每个像素的软掩码$\hat E_s$,表明网络信任那些目标像素能进行视图合成。基于$\hat E_s$后的损失函数为

    $L_{vs} = \sum_{<I_1,...,I_N> \in S}{\sum_p{\hat E_s(p)|I_t(p) - \hat I_s(p)|}}

  由于不能对$\hat E_s$直接监督,使用上述的损失进行训练将导致网络总是预测$\hat E_s$为零(就最小化了损失)。为了解决这个问题,添加一个正则项$L_{reg}(\hat E_s)$,通过在每个像素位置上使用常数标签1最小化交叉熵损失来鼓励非零预测。

2. 克服梯度局部性

  上述的学习方式还有一个遗留问题,梯度主要来自$I(p_t)$和它4个邻居之间的像素强度差,如果像素位于低纹理区域或远离当前估计,则会抑制训练。解决这个问题有两个方案:

  1. 使用总面积encoder-deconder架构,深度网络的输出隐含地约束全局平滑,并促进梯度从有意义的区域传播到附近的区域。

  2. 明确的多尺度和平滑损失,允许直接从更大的空间区域导出梯度。

  作者选择第二种方案,原因是它对架构选择不太敏感。为了平滑,作者最小化预测深度图的二阶梯度的L1范数。最终的损失函数为:

    $L_{final} = \sum_l{L_{vs}^l} + \lambda_s L_{smooth}^l + \lambda_e \sum_s{L_{reg}(\hat E_s^l)}$

总结

  在作者提出该方案前,已经存在基于深度值的监督学习和基于姿态的监督学习,他的出发点是以多种有相关性的任务同时学习,从而融合它们的学习结果可以回归到原图像,这使一方面同时训练多个相关模型,另一方面能起到自监督的效果。

Unsupervised Learning of Depth and Ego-Motion from Video(CVPR2017)论文阅读的更多相关文章

  1. Learning under Concept Drift: A Review 概念漂移综述论文阅读

    首先这是2018年一篇关于概念漂移综述的论文[1]. 最新的研究内容包括 (1)在非结构化和噪声数据集中怎么准确的检测概念漂移.how to accurately detect concept dri ...

  2. SfMLearner论文笔记——Unsupervised Learning of Depth and Ego-Motion from Video

    1. Abstract 提出了一种无监督单目深度估计和相机运动估计的框架 利用视觉合成作为监督信息,使用端到端的方式学习 网络分为两部分(严格意义上是三个) 单目深度估计 多视图姿态估计 解释性网络( ...

  3. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  4. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  5. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  6. Unsupervised Learning and Text Mining of Emotion Terms Using R

    Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...

  7. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  8. Unsupervised learning无监督学习

    Unsupervised learning allows us to approach problems with little or no idea what our results should ...

  9. PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning --- 论文笔记

    PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning   ICLR 20 ...

  10. 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类

    @(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...

随机推荐

  1. Unix shell开头的#!

    1:位于脚本文件最开始 2:#!告诉系统内核应有哪个shell来执行所指定的shell脚本. 3:如#! /bin/bash ,#!与shell文件名之间可以有空格,没有限定. 4:指定的shell可 ...

  2. 一文理解TS泛型

    当我们在编写 TypeScript 代码时,经常会遇到需要通用(Generic)的情况,这时候,泛型就是我们的好帮手了.在本篇文章中,我们将深入介绍 TypeScript 泛型的概念以及如何使用. 什 ...

  3. sklearn数据预处理中fit(),transform()与fit_transform()的区别

    1 概述 注意这是数据预处理中的方法: Fit(): Method calculates the parameters μ and σ and saves them as internal objec ...

  4. 老夫的正则表达式大成了,桀桀桀桀!!!【Python 正则表达式笔记】

    一.正则表达式语法 (一) 字符与字符类 特殊字符 \.^$?+*{}[]()| 为特殊字符,若想要使用字面值,必须使用 \ 进行转义 字符类 [] [] 匹配包含在方括号中的任何字符.它也可以指定范 ...

  5. JavaScript 如何判断一个对象中是否有某个属性?

    今天讲讲,JavaScript 如何判断一个对象中是否有某个属性? 我总结了5个方法: 方法1: if(Obj[a]) {} 缺点:对于参数值为 undefined 和 0 的无效. 方法2: if( ...

  6. 2022-12-30:某天小美进入了一个迷宫探险,根据地图所示,这个迷宫里有无数个房间 序号分别为1、2、3、...入口房间的序号为1 任意序号为正整数x的房间,都与序号 2*x 和 2*x + 1

    2022-12-30:某天小美进入了一个迷宫探险,根据地图所示,这个迷宫里有无数个房间 序号分别为1.2.3.-入口房间的序号为1 任意序号为正整数x的房间,都与序号 2x 和 2x + 1 的房间之 ...

  7. 2020-11-26:go中,map的创建流程是什么?

    福哥答案2020-11-26: [答案来自此链接:](https://www.bilibili.com/video/BV1Nr4y1w7aa?p=10)源码位于runtime/map.go文件中的ma ...

  8. 2022-04-20:小团去参加军训,军训快要结束了, 长官想要把大家一排n个人分成m组,然后让每组分别去参加阅兵仪式, 只能选择相邻的人一组,不能随意改变队伍中人的位置, 阅兵仪式上会进行打分,其中

    2022-04-20:小团去参加军训,军训快要结束了, 长官想要把大家一排n个人分成m组,然后让每组分别去参加阅兵仪式, 只能选择相邻的人一组,不能随意改变队伍中人的位置, 阅兵仪式上会进行打分,其中 ...

  9. 2021-11-08:扁平化嵌套列表迭代器。给你一个嵌套的整数列表 nestedList 。每个元素要么是一个整数,要么是一个列表;该列表的元素也可能是整数或者是其他列表。请你实现一个迭代器将其扁平化

    2021-11-08:扁平化嵌套列表迭代器.给你一个嵌套的整数列表 nestedList .每个元素要么是一个整数,要么是一个列表:该列表的元素也可能是整数或者是其他列表.请你实现一个迭代器将其扁平化 ...

  10. 7-8 切分表达式——写个tokenizer吧 (20 分)

    1.题目描述: [先说点出题背景] 这个题是为低年级同学.学C语言的同学准备的,因为,对这部分同学,这个题目编写起来略有一点复杂.如果是高年级.学过了正则表达式(Regular Expression) ...