[poj1830]开关问题(高斯消元)
题意:求高斯消元中自由元的个数,输出1<<ans;
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
int a[N][N],ans[N];
int T,n,x,nn;
int gauss(int nn){
int i,j,k,l;
for(i=,j=;i<=nn&&j<=nn;j++){
for(k=i;k<=nn;k++)if(a[k][j])break;
if(a[k][j]){
for(l=;l<=nn+;l++)swap(a[i][l],a[k][l]);
for(l=;l<=nn;l++){
if(l!=i&&a[l][j])for(k=;k<=nn+;k++)a[l][k]^=a[i][k];
}
i++;
}
}
for(j=i;j<=nn;j++)if(a[j][n+])return -;
return <<(n-i+);
} int main(){
scanf("%d",&T);
while(T--){
memset(a,,sizeof a);
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i][n+]);
for(int i=;i<=n;i++)scanf("%d",&x),a[i][n+]^=x;
int tx,ty;
while(scanf("%d%d",&tx,&ty)&&(tx||ty))a[ty][tx]=;//注意
for(int i=;i<=n;i++)a[i][i]=;
int ans=gauss(n);
if(ans==-)printf("Oh,it's impossible~!!\n");
else printf("%d\n",ans);
}
return ;
}
[poj1830]开关问题(高斯消元)的更多相关文章
- poj1830 开关问题[高斯消元]
其实第一反应是双向BFS或者meet in middle,$2^{14}$的搜索量,多测,应该是可以过的,但是无奈双向BFS我只写过一题,已经不会写了. 发现灯的操作情况顺序不影响结果,因为操作相当于 ...
- POJ - 1681: Painter's Problem (开关问题-高斯消元)
pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...
- POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)
pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...
- POJ 3185 The Water Bowls 【一维开关问题 高斯消元】
任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ1830开关问题——gauss消元
题目链接 分析: 第一个高斯消元题目,操作是异或.奇偶能够用0.1来表示,也就表示成bool类型的方程,操作是异或.和加法没有差别 题目中有两个未知量:每一个开关被按下的次数(0.1).每一个开关的转 ...
- POJ 1830 开关问题 高斯消元,自由变量个数
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...
- POJ 1830 开关问题 (高斯消元)
题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...
- POJ 1830 开关问题 [高斯消元XOR]
和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...
- POJ - 1830:开关问题 (开关问题-高斯消元-自由元)
pro:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开. ...
- POJ.1830.开关问题(高斯消元 异或方程组)
题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...
随机推荐
- 谁能举个通俗易懂的例子告诉我IAAS,SAAS,PAAS的区别?【转自知乎】
是时候祭出这篇吃货文章了: ———————————————————— ———————————————————— ———————————————————— &amp;amp;amp;lt ...
- EasyPlayer RTSP Windows播放器D3D,GDI的几种渲染方式的选择区别
EasyPlayer-RTSP windows播放器支持D3D和GDI两种渲染方式,其中D3D支持格式如下: DISPLAY_FORMAT_YV12 DISPLAY_FORMAT_YUY2 DISPL ...
- reduce python 的用法
1.查看reduce 的用法 在python 命令查看 import functools help(functools) help(functools.reduce) 或者 from functool ...
- [证书服务器 第二篇] 基于OpenSSL 在 CentOS6 系统上 搭建自签证书服务,并应用于Web容器
第一部分:概述 .. 第二部分:环境准备 1 操作系统 CentOS 6.x 2 安装openssl yum install -y openssl 3 安装jdk 从官网下载JDK http://ww ...
- ZooKeeper原理及使用(转)
原文地址 ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby ...
- Spring项目中使用jackson序列化key为对象Map
1.注入ObjectMapper2.注册类HistoricTaskInstance的序列化和反序列化类HistoricTaskInstanceKeySerializer,HistoricTaskIns ...
- cygwin添加到有右键菜单
cygwin添加到有右键菜单 前提 为了在windows中使用cygwin编译指定文件代码更为方便,所以动心思琢磨把cygwin添加到右键菜单,百度了一下,发现很多这样的教程,但是有问题,比如添加了但 ...
- UVA11330 Andy's Shoes —— 置换分解
题目链接:https://vjudge.net/problem/UVA-11330 题意: 给出n双鞋子,鞋子按左右左右地摆放,但“左右”是否为一对鞋子是不确定的.问:至少交换多少次鞋子,才能把每双鞋 ...
- 分享知识-快乐自己:初识 Hibernate 概念片(一)
1):什么是 Hibernate? Hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,它将POJO与数据库表建立映射关系,是一个全自动的orm框架,hibe ...
- Python 使用正则表达式验证密码必须包含大小写字母和数字
校验密码是否合法的程序. 输入一个密码 1.长度5-10位 2.密码里面必须包含,大写字母.小写字母和数字 3.最多输入5次 ===================================== ...