codeforces 553 D Nudist Beach
题意大概是。给出一个图,保证每一个点至少有一条边以及随意两点间最多一条边。非常显然这个图有众多点集,若我们给每一个点定义一个权值,那每一个点集都有一个最小权值点,如今要求出一个点集,这个点集的最小权值点尽可能的大。
某个子集中。点的权值是这样算的。在该子集中这个点的度除以该点在图中的度。
乍看上去似乎无从下手。
能够显然知道的是。每一个点在图中的权值是非常easy算出来的,那我们尝试从图中进行删点。使得当前图的最小权值点的权值变大,显然能够知道要删除最小权值点。为什么呢?由于若删除次小权值点,若次小权值点跟最小权值点有连边,那最小权值点还是新图的最小权值点。若没有连边,那新图的最小权值点也依然未变。
所以仅仅有删除最小权值点才有可能改变新图的最小权值点,也仅仅有这样能让新图的最小权值发生改变。
那么到这里就十分明显了,仅仅要每次删除当前图的最小权值点。那么必定能够枚举出一个新图。这个新图的点构成的点集正是我们要的答案。
于是这个题就能够做了,我是直接做了两次删除,第一次得出最大最小权值是多少,第二次枚举到一个新图的最小权值等于最大最小权值。那么非常显然这个新图的子集就是答案。
维护一个小堆就好了,时间复杂度是2(n+m)log(n+m)
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<iostream>
#include<algorithm>
#include<bitset>
#include<climits>
#include<list>
#include<iomanip>
#include<stack>
#include<set>
using namespace std;
struct node
{
int no;
double val;
node(){}
node(int no,double val)
{
this->no=no;
this->val=val;
}
bool operator <(node one)const
{
return val>one.val;
}
};
priority_queue<node>q[2];
bool fb[100010],dl[100010];
vector<int>edge[100010];
int d[100010][2],dd[100010];
int main()
{
int n,m,k;
cin>>n>>m>>k;
int sum=k;
while(k--)
{
int t;
cin>>t;
fb[t]=1;
}
while(m--)
{
int a,b;
cin>>a>>b;
d[a][0]++;
d[b][0]++;
if(!fb[a])
d[b][1]++;
if(!fb[b])
d[a][1]++;
edge[a].push_back(b);
edge[b].push_back(a);
}
double mn=1e99;
for(int i=1;i<=n;i++)
if(!fb[i])
{
q[0].push(node(i,double(d[i][1])/d[i][0]));
mn=min(mn,double(d[i][1])/d[i][0]);
}
q[1]=q[0];
int flag=0;
for(int i=0;i<2;i++)
{
memset(dl,0,sizeof(dl));
memset(dd,0,sizeof(dd));
if(i==1&&flag==0)
break;
while(q[i].size())
{
node t=q[i].top();
q[i].pop();
if(dl[t.no])
continue;
if(i==1)
{
if(t.no==flag)
break;
sum++;
}
dl[t.no]=1;
if(i==0&&t.val>mn)
{
mn=t.val;
flag=t.no;
}
for(int j=0;j<edge[t.no].size();j++)
{
int v=edge[t.no][j];
if(dl[v]||fb[v])
continue;
dd[v]++;
q[i].push(node(v,double(d[v][1]-dd[v])/d[v][0]));
}
}
}
cout<<n-sum<<endl;
for(int i=1;i<=n;i++)
if(!fb[i]&&!dl[i])
cout<<i<<" ";
}
2 seconds
256 megabytes
standard input
standard output
Nudist Beach is planning a military operation to attack the Life Fibers. In this operation, they will attack and capture several cities which are currently under the control of the Life Fibers.
There are n cities, labeled from 1 to n,
and m bidirectional roads between them. Currently, there are Life Fibers in every city. In addition, there are k cities
that are fortresses of the Life Fibers that cannot be captured under any circumstances. So, the Nudist Beach can capture an arbitrary non-empty subset of cities with no fortresses.
After the operation, Nudist Beach will have to defend the captured cities from counterattack. If they capture a city and it is connected to many Life Fiber controlled cities, it will be easily defeated. So, Nudist Beach would like to capture a set of cities
such that for each captured city the ratio of Nudist Beach controlled neighbors among all neighbors of that city is as high as possible.
More formally, they would like to capture a non-empty set of cities S with no fortresses of Life Fibers. The strength of a city
is
defined as (number of neighbors of x in S)
/ (total number of neighbors of x). Here, two cities are called neighbors if they are connnected with a road. The goal is to maximize
the strength of the weakest city in S.
Given a description of the graph, and the cities with fortresses, find a non-empty subset that maximizes the strength of the weakest city.
The first line of input contains three integers n, m, k (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000, 1 ≤ k ≤ n - 1).
The second line of input contains k integers, representing the cities with fortresses. These cities will all be distinct.
The next m lines contain the roads. The i-th
of these lines will have 2 integers ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi).
Every city will have at least one road adjacent to it.
There is no more than one road between each pair of the cities.
The first line should contain an integer r, denoting the size of an optimum set (1 ≤ r ≤ n - k).
The second line should contain r integers, denoting the cities in the set. Cities may follow in an arbitrary order. This line should
not contain any of the cities with fortresses.
If there are multiple possible answers, print any of them.
9 8 4
3 9 6 8
1 2
1 3
1 4
1 5
2 6
2 7
2 8
2 9
3
1 4 5
10 8 2
2 9
1 3
2 9
4 5
5 6
6 7
7 8
8 10
10 4
8
1 5 4 8 10 6 3 7
The first example case achieves a strength of 1/2. No other subset is strictly better.
The second example case achieves a strength of 1. Note that the subset doesn't necessarily have to be connected.
codeforces 553 D Nudist Beach的更多相关文章
- Codeforces 553D Nudist Beach(二分答案 + BFS)
题目链接 Nudist Beach 来源 Codeforces Round #309 (Div. 1) Problem D 题目大意: 给定一篇森林(共$n$个点),你可以在$n$个点中选择若干个构 ...
- Codeforces 553D Nudist Beach(图论,贪心)
Solution: 假设已经选了所有的点. 如果从中删掉一个点,那么其它所有点的分值只可能减少或者不变. 如果要使若干步删除后最小的分值变大,那么删掉的点集中肯定要包含当前分值最小的点. 所以每次删掉 ...
- codeforces 553D . Nudist Beach 二分
题目链接 有趣的题. 给一个图, n个点m条边. 有k个点不可选择. 现在让你选出一个非空的点集, 使得点集中strength最小的点的strength最大. strength的定义:一个点周围的点中 ...
- codeforces 553 A Kyoya and Colored Balls
这个题.比赛的时候一直在往dp的方向想,可是总有一个组合数学的部分没办法求, 纯粹组合数学撸,也想不到办法-- 事实上,非常显然.. 从后往前推,把第k种颜色放在最后一个,剩下的k球.还有C(剩余的位 ...
- Codeforces Round #309 (Div. 1)
A. Kyoya and Colored Balls 大意: 给定$k$种颜色的球, 第$i$种颜色有$c_i$个, 一个合法的排列方案满足最后一个第$i$种球的下一个球为第$i+1$种球, 求合法方 ...
- Codeforces 599C Day at the Beach(想法题,排序)
C. Day at the Beach One day Squidward, Spongebob and Patrick decided to go to the beach. Unfortunate ...
- Codeforces Round #332 (Div. 2) C. Day at the Beach 线段树
C. Day at the Beach Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/599/p ...
- Codeforces Round #326 (Div. 2) D. Duff in Beach dp
D. Duff in Beach Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/588/probl ...
- Codeforces Round #553 (Div. 2) D题
题目网址:http://codeforces.com/contest/1151/problem/D 题目大意:给出n组数对,(ai , bi),调整这n组数对的位置,最小化 ∑(ai*( i -1)+ ...
随机推荐
- 添加rpmforge源 centos 7
(原创)RHEL/CentOS 7.x使用EPEL第三方yum源 时间 2014-07-22 19:45:50 服务器运维与网站架构 原文 http://www.ha97.com/5649.html ...
- [luoguP3231] [HNOI2013]消毒(最小点覆盖 + 状压)
传送门 考虑贪心,控制某一维为1,另两位最大是最优的,也就是一次选一个厚度为1的面 那么对于每个点,可以有3种面是可以选到它的 然后gg 考虑二维的状态,一个平面,有些点,一次选一行或一列最优 那么每 ...
- Java设计模式(Design Patterns)——可复用面向对象软件的基础
设计模式(Design Patterns) 设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结. 使用设计模式是为了可重用代码.让代码更容易被他 ...
- Linux System Programming 学习笔记(九) 内存管理
1. 进程地址空间 Linux中,进程并不是直接操作物理内存地址,而是每个进程关联一个虚拟地址空间 内存页是memory management unit (MMU) 可以管理的最小地址单元 机器的体系 ...
- FZOJ Problem 2150 Fire Game
...
- 让旧浏览器支持HTML5新增标签
首先我们使用JS进行标签创建,为HTML文件创建我们需要的这几个HTML5标签. 接下来,我们需要使用CSS进行这几个HTML5标签的样式控制,这是因为,通过这种方法创建的新标签,默认是行内元素. ...
- SpringBoot之ApplicationContextInitializer的理解和使用
一. ApplicationContextInitializer 介绍 首先看spring官网的介绍: 翻译一下: 用于在spring容器刷新之前初始化Spring ConfigurableAppli ...
- 【MFC】error RC2108: expected numerical dialog constant(转)
原文转自 http://blog.csdn.net/renyhui/article/details/23120469 [解决方案]在控件ID后面添加 "Static", SS_BI ...
- 转 手把手教你最简单的开源项目托管GitHub入门教程
传送门 自从google code关闭了下载服务了之后,GitHub作为了目前最好用的免费开源项目托管站点,众多开源项目都托管在github,其中不乏著名的播放器MPC-HC. 不习惯于英文的朋友,难 ...
- 转 Perl函数返回值用法指导
http://developer.51cto.com/art/201007/213003.htm Perl函数返回值用法指导 Perl编程语言中Perl函数返回值用法你是否比较熟悉,这里向大家简单 ...