问题描述
  为了增加公司收入,F公司新开设了物流业务。由于F公司在业界的良好口碑,物流业务一开通即受到了消费者的欢迎,物流业务马上遍及了城市的每条街道。然而,F公司现在只安排了小明一个人负责所有街道的服务。
  任务虽然繁重,但是小明有足够的信心,他拿到了城市的地图,准备研究最好的方案。城市中有n个交叉路口,m条街道连接在这些交叉路口之间,每条街道的
首尾都正好连接着一个交叉路口。除开街道的首尾端点,街道不会在其他位置与其他街道相交。每个交叉路口都至少连接着一条街道,有的交叉路口可能只连接着一
条或两条街道。
  小明希望设计一个方案,从编号为1的交叉路口出发,每次必须沿街道去往街道另一端的路口,再从新的路口出发去往下一个路口,直到所有的街道都经过了正好一次。
输入格式
  输入的第一行包含两个整数n, m,表示交叉路口的数量和街道的数量,交叉路口从1到n标号。
  接下来m行,每行两个整数a, b,表示和标号为a的交叉路口和标号为b的交叉路口之间有一条街道,街道是双向的,小明可以从任意一端走向另一端。两个路口之间最多有一条街道。
输出格式
  如果小明可以经过每条街道正好一次,则输出一行包含m+1个整数p1, p2, p3, ..., pm+1,表示小明经过的路口的顺序,相邻两个整数之间用一个空格分隔。如果有多种方案满足条件,则输出字典序最小的一种方案,即首先保证p1最小,p1最小的前提下再保证p2最小,依此类推。
  如果不存在方案使得小明经过每条街道正好一次,则输出一个整数-1。
样例输入
4 5
1 2
1 3
1 4
2 4
3 4
样例输出
1 2 4 1 3 4
样例说明
  城市的地图和小明的路径如下图所示。
样例输入
4 6
1 2
1 3
1 4
2 4
3 4
2 3
样例输出
-1
样例说明
  城市的地图如下图所示,不存在满足条件的路径。
评测用例规模与约定
  前30%的评测用例满足:1 ≤ n ≤ 10, n-1 ≤ m ≤ 20。
  前50%的评测用例满足:1 ≤ n ≤ 100, n-1 ≤ m ≤ 10000。
  所有评测用例满足:1 ≤ n ≤ 10000,n-1 ≤ m ≤ 100000。
析:根据题意就能看出来是欧拉路,关于欧拉路,就相当于一笔画,从一个结点出发(这个题是确定了,从1出发),然后把所有的边都走一遍,那么首先,
如果结点有多于2个度为奇数,那么一定不可能,如果有两个奇度结点,那么必须有一个是1,否则就不行了,至于连通性可以用并查集,或者也可以用DFS来判,
最后就是打印路径,这里可以用stack来储存答案,然后DFS去搜,要想字典序小,首先是把所有的点按大小排序,然后在搜的时候优先选择小的,这样字典序就最小。
 
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e4 + 5;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
vector<int> G[maxn];
int p[maxn], in[maxn];
int Find(int x) { return x == p[x] ? x : p[x] = Find(p[x]); }
stack<int> ans;
bool vis[maxn][maxn]; void dfs(int u){
for(int i = 0; i < G[u].size(); ++i){
int v = G[u][i];
if(!vis[u][v]){
vis[u][v] = vis[v][u] = 1;
dfs(v);
ans.push(v);
}
}
} bool judge(){
int x = Find(1);
int cnt = 0;
for(int i = 1; i <= n; ++i){
if(x != Find(i)) return false;
if(in[i] & 1) ++cnt;
if(cnt > 2) return false;
sort(G[i].begin(), G[i].end());
} if(cnt == 2 && in[1] % 2 == 0) return false;
return true;
} void print(){
printf("1");
while(!ans.empty()){
printf(" %d", ans.top());
ans.pop();
}
printf("\n");
} int main(){
while(scanf("%d %d", &n, &m) == 2){
for(int i = 1; i <= n; ++i) G[i].clear(), p[i] = i;
memset(in, 0, sizeof in);
memset(vis, false, sizeof vis);
int u, v;
for(int i = 0; i < m; ++i){
scanf("%d %d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
int x = Find(u);
int y = Find(v);
if(x != y) p[y] = x;
++in[u]; ++in[v];
} if(!judge()){ printf("-1\n"); continue; }
dfs(1);
print();
}
return 0;
}

CCF 201512-4 送货 (并查集+DFS,欧拉路)的更多相关文章

  1. Colored Sticks (并查集+Trie + 欧拉路)

    Time Limit: 5000MS   Memory Limit: 128000K Total Submissions: 37340   Accepted: 9796 Description You ...

  2. HDU 1232 并查集/dfs

    原题: http://acm.hdu.edu.cn/showproblem.php?pid=1232 我的第一道并查集题目,刚刚学会,我是照着<啊哈算法>这本书学会的,感觉非常通俗易懂,另 ...

  3. 1021.Deepest Root (并查集+DFS树的深度)

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...

  4. POJ1291-并查集/dfs

    并查集 题意:找出给定的这些话中是否有冲突.若没有则最多有多少句是对的. /* 思路:如果第x句说y是对的,则x,y必定是一起的,x+n,y+n是一起的:反之x,y+n//y,x+n是一起的. 利用并 ...

  5. F2 - Spanning Tree with One Fixed Degree - 并查集+DFS

    这道题还是非常有意思的,题意很简单,就是给定一个图,和图上的双向边,要求1号节点的度(连接边的条数)等于K,求这棵树的生成树. 我们首先要解决,如何让1号节点的度时为k的呢???而且求的是生成树,意思 ...

  6. UVA208-Firetruck(并查集+dfs)

    Problem UVA208-Firetruck Accept:1733  Submit:14538 Time Limit: 3000 mSec  Problem Description The Ce ...

  7. 2018 计蒜之道复赛 贝壳找房魔法师顾问(并查集+dfs判环)

    贝壳找房在遥远的传奇境外,找到了一个强大的魔法师顾问.他有 22 串数量相同的法力水晶,每个法力水晶可能有不同的颜色.为了方便起见,可以将每串法力水晶视为一个长度不大于 10^5105,字符集不大于  ...

  8. Codeforces 455C Civilization(并查集+dfs)

    题目链接:Codeforces 455C Civilization 题目大意:给定N.M和Q,N表示有N个城市,M条已经修好的路,修好的路是不能改变的.然后是Q次操作.操作分为两种.一种是查询城市x所 ...

  9. hdu6370 并查集+dfs

    Werewolf Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

随机推荐

  1. PS 魔法棒

    魔术棒工具是通过选取图像中颜色相近或大面积单色区域的像素来制作选区,魔术棒用于纯色背景中较多. 容差数值越大,选择出的选区就越大,容差越小,对颜色差别的要求也就越严格,选择出的选区也就越小 按住shi ...

  2. Eclipse编码设置(转载)

    来源:http://e-ant.javaeye.com/blog/177579 如果要使插件开发应用能有更好的国际化支持,能够最大程度的支持中文输出,则最好使 Java文件使用UTF-8编码.然而,E ...

  3. EasyDarwin流媒体云平台架构

    EasyDarwin目前正在做的开源流媒体云平台架构:

  4. sticky session 粘性会话

    New Elastic Load Balancing Feature: Sticky Sessions | AWS News Blog https://amazonaws-china.com/cn/b ...

  5. DuiLib笔记之CDuiString的bug

    在C/C++中,当使用==比较两个对象时,推荐的风格是将常量置前 例如 if (0 == variable) { ... } 但在DuiLib中,CDuiString存在一个bug:在用==进行比较时 ...

  6. mongodb学习之:数据库

    首先来介绍下Mongodb的基本概念: 左边一列是关系数据库的术语,右边这一列是NOSQL也就是mongodb的术语 database:       database         数据库 tabl ...

  7. php mcrypt加密实例

    <?php //当前mcrypt支持的加密模型 $modes_list = mcrypt_list_modes(); // Array // ( // [0] => cbc // [1] ...

  8. Jmeter创建一个简单的http接口用例

    1.新建线程组 添加->Threads(Users)->线程组 线程组用来模拟用户进程. 2.添加http信息头管理器 添加->配置元件->http信息头管理器 Systemi ...

  9. session机制大揭秘(结合cookie)

    session运行机制 当一个session开始时,servlet容器将创建一个httpSession对象,在HttpSession对象中可以存放客户状态信息. servlet容器为HttpSessi ...

  10. sipp 对asterisk 进行压力测试

    测试环境 asterisk  192.168.106.170 版本astrisk1.8 sipp   192.168.106.141 sipp版本3.3 安装依赖包yum install make g ...