发现对角线上的和是一个定值。

然后就不考虑斜着,可以处理出那些行和列是可以放置的。

然后FFT,统计出每一个可行的项的系数和就可以了。

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair #define maxn 200005 struct Complex{
double x,y;
Complex () {}
Complex (double _x,double _y) {x=_x;y=_y;}
Complex operator + (Complex a) {return Complex(x+a.x,y+a.y);}
Complex operator - (Complex a) {return Complex(x-a.x,y-a.y);}
Complex operator * (Complex a) {return Complex(x*a.x-y*a.y,x*a.y+y*a.x);}
}A[maxn],B[maxn],C[maxn]; int t,r,c,n,k,m,len,line[maxn],row[maxn],ang[maxn],rev[maxn],cntl=0,cntr=0,kas=0;
ll ans=0; const double pi=acos(-1.0); void FFT(Complex * x,int n,int flag)
{
F(i,0,n-1) if (rev[i]>i) swap(x[i],x[rev[i]]);
for (int m=2;m<=n;m<<=1)
{
Complex wn=Complex(cos(2*pi/m),flag*sin(2*pi/m));
for (int i=0;i<n;i+=m)
{
Complex w=Complex(1.0,0);
for (int j=0;j<(m>>1);++j)
{
Complex u=x[i+j],v=x[i+j+(m>>1)]*w;
x[i+j]=u+v; x[i+j+(m>>1)]=u-v;
w=w*wn;
}
}
}
if (flag==-1) F(i,0,n-1) x[i].x=(x[i].x+0.3)/n;
} int main()
{
scanf("%d",&t);
while (t--)
{
memset(line,0,sizeof line);
memset(row,0,sizeof row);
memset(ang,0,sizeof ang);
cntl=cntr=0;
scanf("%d%d%d",&r,&c,&k);
F(i,1,k)
{
int x,y;
scanf("%d%d",&x,&y);
x=r-x+1;
if (!line[x]) cntl++;
if (!row[y]) cntr++;
line[x]=1; row[y]=1;
ang[x+y]=1;
}
ans=((ll)r-(ll)cntl)*((ll)c-(ll)cntr);
n=r+c+10;m=1;len=0;
while (m<=n) m<<=1,len++;n=m;
F(i,0,n-1)
{
int ret=0,t=i;
F(j,1,len) ret<<=1,ret|=t&1,t>>=1;
rev[i]=ret;
}
F(i,0,n-1) A[i].x=B[i].x=A[i].y=B[i].y=0;
F(i,1,r) if (!line[i]) A[i].x=1.0;
F(i,1,c) if (!row[i]) B[i].x=1.0;
FFT(A,n,1); FFT(B,n,1);
F(i,0,n-1) C[i]=A[i]*B[i];
FFT(C,n,-1);
F(i,1,r+c) if (ang[i]) ans-=(ll)C[i].x;
printf("Case %d: ",++kas);printf("%lld\n",ans);
}
}

  

UVA 12633 Super Rooks on Chessboard ——FFT的更多相关文章

  1. UVA 12633 Super Rooks on Chessboard [fft 生成函数]

    Super Rooks on Chessboard UVA - 12633 题意: 超级车可以攻击行.列.主对角线3 个方向. R * C 的棋盘上有N 个超级车,问不被攻击的格子总数. 行列好好做啊 ...

  2. UVA 12633 Super Rooks on Chessboard(FFT)

    题意: 给你一个R*C的棋盘,棋盘上的棋子会攻击,一个棋子会覆盖它所在的行,它所在的列,和它所在的从左上到右下的对角线,那么问这个棋盘上没有被覆盖的棋盘格子数.数据范围R,C,N<=50000 ...

  3. [UVA 12633] Super Rooks on Chessboard FFT+计数

    如果只有行和列的覆盖,那么可以直接做,但现在有左上到右下的覆盖. 考虑对行和列的覆盖情况做一个卷积,然后就有了x+y的非覆盖格子数. 然后用骑士的左上到右下的覆盖特判掉那些x+y的格子就可以了. 注意 ...

  4. UVA 12633 Super Rooks on Chessboard (生成函数+FFT)

    题面传送门 题目大意:给你一张网格,上面有很多骑士,每个骑士能横着竖着斜着攻击一条直线上的格子,求没被攻击的格子的数量总和 好神奇的卷积 假设骑士不能斜着攻击 那么答案就是没被攻击的 行数*列数 接下 ...

  5. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  6. UVA12633 Super Rooks on Chessboard

    题目描述 题解: 第一眼满眼骚操作,然后全部否掉. 然后屈服于题解,才发现这题这么执掌. 首先,如果这个东西是普通的车,那我们可以记录一下$x,y$的覆盖情况,然后减一下; 但是这个可以斜着走. 所以 ...

  7. UVA - 12298 Super Poker II NTT

    UVA - 12298 Super Poker II NTT 链接 Vjudge 思路 暴力开个桶,然后统计,不过会T,用ntt或者fft,ntt用个大模数就行了,百度搜索"NTT大模数&q ...

  8. UVA - 11134 Fabled Rooks[贪心 问题分解]

    UVA - 11134 Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to t ...

  9. uva 11134 - Fabled Rooks(问题转换+优先队列)

    题目链接:uva 11134 - Fabled Rooks 题目大意:给出n,表示要在n*n的矩阵上放置n个车,并且保证第i辆车在第i个区间上,每个区间给出左上角和右小角的坐标.另要求任意两个车之间不 ...

随机推荐

  1. 客户端(springmvc)调用netty构建的nio服务端,获得响应后返回页面(同步响应)

    后面考虑通过netty做一个真正意义的简约版RPC框架,今天先尝试通过正常调用逻辑调用netty构建的nio服务端并同步获得返回信息.为后面做铺垫 服务端实现 我们先完成服务端的逻辑,逻辑很简单,把客 ...

  2. C语言字符,字符串,字节操作常用函数

    strlen 这个函数是在 string.h 的头文件中定义的 它的函数原型是 size_t strlen( const char ); size_t 是一个无符号整型,是这样定义的 typedef ...

  3. C# 运用StreamReader类和StreamWriter类实现文件的读写操作

    对文件的读写操作应该是最重要的文件操作,System.IO命名空间为我们提供了诸多文件读写操作类,在这里我要向大家介绍最常用也是最基本的StreamReader类和StreamWriter类.从这两个 ...

  4. c++中的结构化语句 判断语句if 分支语句switch 循环语句 while 和 do while 循环语句for的使用

    作业1: 使用if语句,根据1~7的数字,输出今天是星期几?的程序. 方法一,直接使用单独的if语句 #include <iostream> using namespace std; in ...

  5. vi中系统剪切板的设置

    在vi中,如果编译时没有clipboard属性,将vi中的内容拷贝到系统剪切板有些麻烦.可以用如下的方法,查看vi 是否支持系统剪切板的功能: xt@xt-ThinkPad-X220:~$ vi -- ...

  6. BZOJ3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(dp)

    题意     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡牛之间至少要有K( ...

  7. 【WordPress】CentOS 6.10 测试WP发送邮件失败

    1.错误信息如下: SMTP -> ERROR: Failed to connect to server: Permission denied (13) 2.解决方法: https://gist ...

  8. 【CSS】CSS 的优先级总结

    样式的优先级 多重样式(Multiple Styles):如果外部样式.内部样式和内联样式同时应用于同一个元素,就是使多重样式的情况. 一般情况下,优先级如下: (外部样式)External styl ...

  9. java util - 中文、繁体转成拼音工具pinyin4j

    需要 pinyin4j-2.5.0.jar 包 代码例子 package cn.java.pinyin4j; import net.sourceforge.pinyin4j.PinyinHelper; ...

  10. linux Ubuntu18.04 安装配置MySQL

    1.安装 ubuntu上安装mysql非常简单只需要几条命令就可以完成. 1. sudo apt-get install mysql-server   2. apt-get install mysql ...