发现对角线上的和是一个定值。

然后就不考虑斜着,可以处理出那些行和列是可以放置的。

然后FFT,统计出每一个可行的项的系数和就可以了。

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair #define maxn 200005 struct Complex{
double x,y;
Complex () {}
Complex (double _x,double _y) {x=_x;y=_y;}
Complex operator + (Complex a) {return Complex(x+a.x,y+a.y);}
Complex operator - (Complex a) {return Complex(x-a.x,y-a.y);}
Complex operator * (Complex a) {return Complex(x*a.x-y*a.y,x*a.y+y*a.x);}
}A[maxn],B[maxn],C[maxn]; int t,r,c,n,k,m,len,line[maxn],row[maxn],ang[maxn],rev[maxn],cntl=0,cntr=0,kas=0;
ll ans=0; const double pi=acos(-1.0); void FFT(Complex * x,int n,int flag)
{
F(i,0,n-1) if (rev[i]>i) swap(x[i],x[rev[i]]);
for (int m=2;m<=n;m<<=1)
{
Complex wn=Complex(cos(2*pi/m),flag*sin(2*pi/m));
for (int i=0;i<n;i+=m)
{
Complex w=Complex(1.0,0);
for (int j=0;j<(m>>1);++j)
{
Complex u=x[i+j],v=x[i+j+(m>>1)]*w;
x[i+j]=u+v; x[i+j+(m>>1)]=u-v;
w=w*wn;
}
}
}
if (flag==-1) F(i,0,n-1) x[i].x=(x[i].x+0.3)/n;
} int main()
{
scanf("%d",&t);
while (t--)
{
memset(line,0,sizeof line);
memset(row,0,sizeof row);
memset(ang,0,sizeof ang);
cntl=cntr=0;
scanf("%d%d%d",&r,&c,&k);
F(i,1,k)
{
int x,y;
scanf("%d%d",&x,&y);
x=r-x+1;
if (!line[x]) cntl++;
if (!row[y]) cntr++;
line[x]=1; row[y]=1;
ang[x+y]=1;
}
ans=((ll)r-(ll)cntl)*((ll)c-(ll)cntr);
n=r+c+10;m=1;len=0;
while (m<=n) m<<=1,len++;n=m;
F(i,0,n-1)
{
int ret=0,t=i;
F(j,1,len) ret<<=1,ret|=t&1,t>>=1;
rev[i]=ret;
}
F(i,0,n-1) A[i].x=B[i].x=A[i].y=B[i].y=0;
F(i,1,r) if (!line[i]) A[i].x=1.0;
F(i,1,c) if (!row[i]) B[i].x=1.0;
FFT(A,n,1); FFT(B,n,1);
F(i,0,n-1) C[i]=A[i]*B[i];
FFT(C,n,-1);
F(i,1,r+c) if (ang[i]) ans-=(ll)C[i].x;
printf("Case %d: ",++kas);printf("%lld\n",ans);
}
}

  

UVA 12633 Super Rooks on Chessboard ——FFT的更多相关文章

  1. UVA 12633 Super Rooks on Chessboard [fft 生成函数]

    Super Rooks on Chessboard UVA - 12633 题意: 超级车可以攻击行.列.主对角线3 个方向. R * C 的棋盘上有N 个超级车,问不被攻击的格子总数. 行列好好做啊 ...

  2. UVA 12633 Super Rooks on Chessboard(FFT)

    题意: 给你一个R*C的棋盘,棋盘上的棋子会攻击,一个棋子会覆盖它所在的行,它所在的列,和它所在的从左上到右下的对角线,那么问这个棋盘上没有被覆盖的棋盘格子数.数据范围R,C,N<=50000 ...

  3. [UVA 12633] Super Rooks on Chessboard FFT+计数

    如果只有行和列的覆盖,那么可以直接做,但现在有左上到右下的覆盖. 考虑对行和列的覆盖情况做一个卷积,然后就有了x+y的非覆盖格子数. 然后用骑士的左上到右下的覆盖特判掉那些x+y的格子就可以了. 注意 ...

  4. UVA 12633 Super Rooks on Chessboard (生成函数+FFT)

    题面传送门 题目大意:给你一张网格,上面有很多骑士,每个骑士能横着竖着斜着攻击一条直线上的格子,求没被攻击的格子的数量总和 好神奇的卷积 假设骑士不能斜着攻击 那么答案就是没被攻击的 行数*列数 接下 ...

  5. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  6. UVA12633 Super Rooks on Chessboard

    题目描述 题解: 第一眼满眼骚操作,然后全部否掉. 然后屈服于题解,才发现这题这么执掌. 首先,如果这个东西是普通的车,那我们可以记录一下$x,y$的覆盖情况,然后减一下; 但是这个可以斜着走. 所以 ...

  7. UVA - 12298 Super Poker II NTT

    UVA - 12298 Super Poker II NTT 链接 Vjudge 思路 暴力开个桶,然后统计,不过会T,用ntt或者fft,ntt用个大模数就行了,百度搜索"NTT大模数&q ...

  8. UVA - 11134 Fabled Rooks[贪心 问题分解]

    UVA - 11134 Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to t ...

  9. uva 11134 - Fabled Rooks(问题转换+优先队列)

    题目链接:uva 11134 - Fabled Rooks 题目大意:给出n,表示要在n*n的矩阵上放置n个车,并且保证第i辆车在第i个区间上,每个区间给出左上角和右小角的坐标.另要求任意两个车之间不 ...

随机推荐

  1. fopen, fdopen, freopen - 打开流

    SYNOPSIS (总览) #include <stdio.h> FILE *fopen(const char *path, const char *mode); FILE *fdopen ...

  2. 【转帖】Linux mount 域控权限的共享目录

    https://www.linuxidc.com/Linux/2012-09/71388.htm 之前一直以为没法 映射 home 域的内容 其实还有一个地方.. 注意 空格的话 需要用 \ 进行转移 ...

  3. JT∕T 905 -2014 出租汽车服务管理信息系统的相关协议研究

    出租汽车服务管理信息系统(JT∕T 905 -2014) 国家的相关技术要求2014年7月正式出台,总体有四部分,   第 1 部分:总体技术要求:   第 2 部分:运营专用设备:   第 3 部分 ...

  4. 把网上图片下载到本地的java工具类

    package com.swift; import java.io.File; import java.io.FileOutputStream; import java.io.InputStream; ...

  5. mysql -u root -p 解释

    使用此命令首先确保你的mysql运行环境已经搭建好 这是客户端连接mysql服务器的指令,比较全的写法是下面两种 第一个是全拼,第二个是第一个的缩写 mysql --host=localhost -- ...

  6. 5.Cisco Packet Tracer里关于交换机或路由器配置文件和系统映像备份与恢复

    我们会将交换机或路由器的配置文件和系统镜像直接备份到tftp服务器上,所以我们需要准备一台tftp的服务器 1我们需要给服务器配一个ip地址,给路由器的f0/1端口配置一个ip地址,路由器与服务器能相 ...

  7. Codeforces Round #462 (Div. 2) A Compatible Pair

    A. A Compatible Pair time limit per test1 second memory limit per test256 megabytes Problem Descript ...

  8. Linuxshell编程

    重点回顾: 1.由于核心的内存中是受保护的区块,因此我们必须要透过“shell”将我们输入的指令与Kernel沟通,好让Kernel可以控制硬件来正确无误的工作 2.学习shell的原因主要有:文字接 ...

  9. HttpRunnerManager 接口自动化测试平台 搭建实践

    一.需要准备的知识点 1. linux: 安装 python3.nginx 安装和配置.mysql 安装和配置 2. python: django 配置.uwsgi 配置 二.我搭建的环境 1. Ce ...

  10. IOS开发---菜鸟学习之路--(二十三)-直接利用键值对的方式来处理数据的感想

    首先声明,本文纯粹只是做为本人个人新手的理解.文中的想法我知道肯定有很多地方是错的. 但是这就是我作为一个新人的使用方法,对于大牛非常欢迎指导,对于喷子请绕道而行. 由于这是早上跟我学长讨论数据处理时 ...