[Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)
Educational Codeforces Round 63 (Rated for Div. 2)
D. Beautiful Array
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
You are given an array aa consisting of nn integers. Beauty of array is the maximum sum of some consecutive subarray of this array (this subarray may be empty). For example, the beauty of the array [10, -5, 10, -4, 1] is 15, and the beauty of the array [-3, -5, -1] is 0.
You may choose at most one consecutive subarray of aa and multiply all values contained in this subarray by xx. You want to maximize the beauty of array after applying at most one such operation.
Input
The first line contains two integers nn and xx (1≤n≤3⋅105,−100≤x≤1001≤n≤3⋅105,−100≤x≤100) — the length of array aa and the integer xx respectively.
The second line contains nn integers a1,a2,…,ana1,a2,…,an (−109≤ai≤109−109≤ai≤109) — the array aa.
Output
Print one integer — the maximum possible beauty of array aa after multiplying all values belonging to some consecutive subarray xx.
Examples
input
Copy
5 -2
-3 8 -2 1 -6
output
Copy
22
input
Copy
12 -3
1 3 3 7 1 3 3 7 1 3 3 7
output
Copy
42
input
Copy
5 10
-1 -2 -3 -4 -5
output
Copy
0
Note
In the first test case we need to multiply the subarray [-2, 1, -6], and the array becomes [-3, 8, 4, -2, 12] with beauty 22([-3, 8, 4, -2, 12]).
In the second test case we don't need to multiply any subarray at all.
In the third test case no matter which subarray we multiply, the beauty of array will be equal to 0.
题意:
给你一个含有n个数字的数组,和一个整数x
你可以选择一个连续的区间\([l,r]\) 然后\(a[l]\)到\(a[r]\) 每一个数\(a[i]\) 变为\(a[i]*x\)
使改变后的数组的最大连续子段和最大。
思路:
动态规划解决该问题:
设\(dp[i][0]\) 代表到第i个位置,没乘以x的最大子段和。
设\(dp[i][1]\) 代表到第i个位置,结尾是乘以x的最大子段和。
设\(dp[i][2]\) 代表到第i个位置,前面有乘以x的,但是当前结尾是没乘x的最大子段和。
转移方程:
dp[i][0] = max(0ll, dp[i - 1][0]) + a[i];
dp[i][1] = max(max(dp[i - 1][1], dp[i - 1][0]), 0ll) + x * a[i];
dp[i][2] = max(max(dp[i - 1][2], dp[i - 1][1]), 0ll) + a[i];
ans = max(ans, max(dp[i][0], max(dp[i][1], dp[i][2])));
AC 代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
ll x;
ll a[maxn];
ll dp[maxn][4];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n >> x;
ll sum = 0ll;
repd(i, 1, n) {
cin >> a[i];
sum += a[i];
}
ll ans = 0ll;
ans = max(ans, sum);
repd(i, 1, n) {
dp[i][0] = max(0ll, dp[i - 1][0]) + a[i];
dp[i][1] = max(max(dp[i - 1][1], dp[i - 1][0]), 0ll) + x * a[i];
dp[i][2] = max(max(dp[i - 1][2], dp[i - 1][1]), 0ll) + a[i];
ans = max(ans, max(dp[i][0], max(dp[i][1], dp[i][2])));
}
cout << ans << endl;
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
[Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)的更多相关文章
- Educational Codeforces Round 63 D. Beautiful Array
D. Beautiful Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Educational Codeforces Round 63 (Rated for Div. 2) 题解
Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...
- Educational Codeforces Round 63部分题解
Educational Codeforces Round 63 A 题目大意就不写了. 挺简单的,若果字符本来就单调不降,那么就不需要修改 否则找到第一次下降的位置和前面的换就好了. #include ...
- Educational Codeforces Round 40 C. Matrix Walk( 思维)
Educational Codeforces Round 40 (Rated for Div. 2) C. Matrix Walk time limit per test 1 second memor ...
- Educational Codeforces Round 53 E. Segment Sum(数位DP)
Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...
- Educational Codeforces Round 63 选做
D. Beautiful Array 题意 给你一个长度为 \(n\) 的序列.你可以选择至多一个子段,将该子段所有数乘上给定常数 \(x\) .求操作后最大的最大子段和. 题解 考虑最大子段和的子段 ...
- Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array (简单DP)
题目:https://codeforces.com/contest/1155/problem/D 题意:给你n,x,一个n个数的序列,你可以选择一段区间,区间的数都乘以x,然后求出最大字段和 思路: ...
- Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array 分类讨论连续递推dp
题意:给出一个 数列 和一个x 可以对数列一个连续的部分 每个数乘以x 问该序列可以达到的最大连续序列和是多少 思路: 不是所有区间题目都是线段树!!!!!! 这题其实是一个很简单的dp 使用的是分 ...
- Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array(动态规划.递推)
传送门 题意: 给你一个包含 n 个元素的序列 a[]: 定义序列 a[] 的 beauty 为序列 a[] 的连续区间的加和最大值,如果全为负数,则 beauty = 0: 例如: a[] = {1 ...
随机推荐
- python-Web-flask-数据库
3 数据库: Flask-SQLAlchemy 安装及连接 pip install flask-sqlalchemy pip install flask-mysqldb # 数据库链接地址 app.c ...
- tf.contrib.layers.fully_connected参数笔记
tf.contrib.layers.fully_connected 添加完全连接的图层. tf.contrib.layers.fully_connected( inputs, num_ou ...
- Leetcode之并查集专题-684. 冗余连接(Redundant Connection)
Leetcode之并查集专题-684. 冗余连接(Redundant Connection) 在本问题中, 树指的是一个连通且无环的无向图. 输入一个图,该图由一个有着N个节点 (节点值不重复1, 2 ...
- OpenCV3编程入门.记录
ZC:OpenCV3编程入门_毛星云编著_电子工业出版.pdf 1.在看到 PDF.P134(计算数组加权和:addWeighted()函数)的时候,其中讲到“当输出数组的深度为CV_32S时,这个函 ...
- luogu P1115 最大子段和 (dp)
链接: https://www.luogu.org/problemnew/show/P1115 题面: 题目描述 给出一段序列,选出其中连续且非空的一段使得这段和最大. 输入输出格式 输入格式: 第一 ...
- oracle中Blob、Clob、Varchar之间的互相转换
以下是oracle中Blob.Clob.Varchar之间的互相转换(都是百度找的,亲测可用) Blob转Varchar2: CREATE OR REPLACE FUNCTION blob_to_va ...
- 补码一位乘法 Booth算法 Java简易实现
本文链接:https://www.cnblogs.com/xiaohu12138/p/11955619.html. 转载,请说明出处. 本程序为简易实现补码一位乘法,若代码中存在错误,可指出,本人会不 ...
- Dom4j 生成xml并格式化
Document document = DocumentHelper.createDocument(); //创建root Element root = document.addEle ...
- (五)Spring 中的 aop
目录 文章目录 AOP概念 AOP原理 AOP术语 **`Spring`** 中的 **`aop`** 的操作 使用 `AspectJ` 实现 `aop` 的两种方式 AOP概念 浅理解 aop :面 ...
- Python爬虫详解
Python爬虫详解 Python 之 Urllib库的基本使用 Python中requests库使用方法详解 Beautifulsoup模块基础用法详解 selenium模块基础用法详解 re(正则 ...