传送门

Description

给出 n 个点和 n−1 种颜色,每种颜色有若干条边。求这张图多少棵每种颜色的边都出现过的生成树,答案对 109+7 取模。

Input

第一行包含一个正整数 N(N<=17), 表示城市个数。

接下来 N-1 行,其中第 i行表示第 i个建筑公司可以修建的路的列表:

以一个非负数mi 开头,表示其可以修建 mi 条路,接下来有mi 对数,

每对数表示一条边的两个端点。其中不会出现重复的边,也不会出现自环。

Output

输出一行一个整数,表示所有可能的方案数对 10^9+7 取模的结果。

Sample Input

4

2 3 2 4 2

5 2 1 3 1 3 2 4 1 4 3

4 2 1 3 2 4 1 4 2

Sample Output

17

Solution

随意选的-一个颜色不选+两个颜色不选。。。

暴力枚举所有情况求出生成树个数统计到答案中即可

Code

//By Menteur_Hxy
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std;
typedef long long LL; int read() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int MOD=1000000007;
bool vis[20];
int n,m[20];
int vx[20][400],vy[20][400];
LL ans,ma[20][20]; LL qpow(LL a,LL b) {
LL t=1;
while(b) {
if(b&1) t=t*a%MOD;
a=a*a%MOD; b>>=1;
}
return t;
} void dfs(int x,int flag) {
if(x==n) {
memset(ma,0,sizeof(ma));
LL now=1,ret;
F(i,1,n-1) if(vis[i])
F(j,1,m[i]) ma[vx[i][j]][vx[i][j]]++,ma[vy[i][j]][vy[i][j]]++,
ma[vx[i][j]][vy[i][j]]--,ma[vy[i][j]][vx[i][j]]--;
int i,j,k;
for(i=2;i<=n;i++) {
for(j=i;j<=n;j++) if(ma[j][i]) break;
if(j>n) break;
if(j!=i) {
flag=-flag;
F(k,i,n) swap(ma[i][k],ma[j][k]);
}
now=now*ma[i][i]%MOD; ret=qpow(ma[i][i],MOD-2);
for(j=i;j<=n;j++) ma[i][j]=ma[i][j]*ret%MOD;
for(j=i+1;j<=n;j++) for(ret=ma[j][i],k=i;k<=n;k++)
ma[j][k]=(ma[j][k]-ret*ma[i][k]%MOD+MOD)%MOD;
}
if(i>n) ans=(ans+flag*now+MOD)%MOD;
return ;
}
vis[x]=1; dfs(x+1,flag);
vis[x]=0; dfs(x+1,-flag);
} int main() {
n=read();
F(i,1,n-1) {
m[i]=read();
F(j,1,m[i]) vx[i][j]=read(),vy[i][j]=read();
}
dfs(1,1);
printf("%lld",ans);
return 0;
}

[luogu3244 SHOI2016] 黑暗前的幻想乡(容斥原理+矩阵树定理)的更多相关文章

  1. 【bzoj4596】[Shoi2016]黑暗前的幻想乡 容斥原理+矩阵树定理

    题目描述 给出 $n$ 个点和 $n-1$ 种颜色,每种颜色有若干条边.求这张图多少棵每种颜色的边都出现过的生成树,答案对 $10^9+7$ 取模. 输入 第一行包含一个正整数 N(N<=17) ...

  2. luoguP4336 [SHOI2016]黑暗前的幻想乡 容斥原理 + 矩阵树定理

    自然地想到容斥原理 然后套个矩阵树就行了 求行列式的时候只有换行要改变符号啊QAQ 复杂度为\(O(2^n * n^3)\) #include <cstdio> #include < ...

  3. 【bzoj4596】[Shoi2016]黑暗前的幻想乡 (矩阵树定理+容斥)

    Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类)博丽灵梦和八云紫等人整日高谈所有妖怪平等 ...

  4. 【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)

    [BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案 ...

  5. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  6. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  7. P4336 [SHOI2016]黑暗前的幻想乡

    P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...

  8. 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理

    [BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

随机推荐

  1. 【SSH之旅】一步步学习Hibernate框架(一):关于持久化

    在不引用不论什么框架下,我们会通过平庸的代码不停的对数据库进行操作,产生了非常多冗余的可是又有规律的底层代码,这样频繁的操作数据库和大量的底层代码的反复书写极大的浪费了程序人员的书写.就在这样一种情况 ...

  2. poj 3468 A Simple Problem with Integers(线段树+区间更新+区间求和)

    题目链接:id=3468http://">http://poj.org/problem? id=3468 A Simple Problem with Integers Time Lim ...

  3. 以&quot;小刀会“的成败论当今创业成败

    讲起"小刀会",熟悉的人或许非常熟悉,不熟悉的人或许根本不知道清末有这样一个组织. 依据翻查史料,最初的小刀会是在福建成立的,来源有两个.一个是天地会的分支,一个是白莲教分支. 而 ...

  4. 2749: [HAOI2012]外星人

    首先像我一样把柿子画出来或者看下hint 你就会发现其实是多了个p-1这样的东东 然后除非是2他们都是偶数,而2就直接到0了 算一下2出现的次数就好 #include<cstdio> #i ...

  5. B3109 [cqoi2013]新数独 搜索dfs

    就是基于普通数独上的一点变形,然后就没什么了,普通数独就是进行一边dfs就行了. 题干: 题目描述 输入格式 输入一共15行,包含一个新数独的实例.第奇数行包含左右方向的符号(<和>),第 ...

  6. multimap的使用 in C++,同一个关键码存在多个值

    #include <iostream> #include <string> #include <vector> #include <algorithm> ...

  7. Find them, Catch them(并查集)

    http://poj.org/problem?id=1703 题意:有两个黑帮团伙,共n名团伙成员(不知道属于这两个黑帮中的哪一个).现在警察有一些信息,每条信息包含2个人的编号,如果给出A a b, ...

  8. 关于sublime代码格式化

    就我接触到的,html,css,js,json,php语言来介绍. html,css,json,js这些,我感觉pretty是比较好用的,ctrl+shift+h快捷键,给人不一样的感受,不过这个插件 ...

  9. Oracle 生成数据字典

    SELECT ROWNUM 序号,A.COLUMN_NAME AS "字段名称",B.comments AS "字段描述", A.DATA_TYPE as 字段 ...

  10. Laravel5.1学习笔记4 控制器

    HTTP 控制器 简介 基础控制器 控制器中间件 RESTful 资源控制器 隐式控制器 依赖注入和控制器 路由缓存 简介 除了在单一的 routes.php 文件中定义所有的请求处理逻辑之外,你可能 ...