php实现数组中的逆序对(归并排序实现:排序 辅助数组

一、总结

这题用归并排序  线段树   树状数组 等操作的复杂度应该都是小于n方的

二、php实现数组中的逆序对

题目描述

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007

输入描述:

题目保证输入的数组中没有的相同的数字

数据范围:

对于%50的数据,size<=10^4

对于%75的数据,size<=10^5

对于%100的数据,size<=2*10^5

示例1

输入

1,2,3,4,5,6,7,0

输出

7

三、代码

思路分析:
看到这个题目,我们的第一反应是顺序扫描整个数组。每扫描到一个数组的时候,逐个比较该数字和它后面的数字的大小。如果后面的数字比它小,则这两个数字就组成了一个逆序对。假设数组中含有n个数字。由于每个数字都要和O(n)这个数字比较,因此这个算法的时间复杂度为O(n^2)。
我们以数组{7,5,6,4}为例来分析统计逆序对的过程。每次扫描到一个数字的时候,我们不拿ta和后面的每一个数字作比较,否则时间复杂度就是O(n^2),因此我们可以考虑先比较两个相邻的数字。
 

(a) 把长度为4的数组分解成两个长度为2的子数组;
(b) 把长度为2的数组分解成两个成都为1的子数组;
(c) 把长度为1的子数组 合并、排序并统计逆序对
(d) 把长度为2的子数组合并、排序,并统计逆序对;
在上图(a)和(b)中,我们先把数组分解成两个长度为2的子数组,再把这两个子数组分别拆成两个长度为1的子数组。接下来一边合并相邻的子数组,一边统计逆序对的数目。在第一对长度为1的子数组{7}、{5}中7大于5,因此(7,5)组成一个逆序对。同样在第二对长度为1的子数组{6}、{4}中也有逆序对(6,4)。由于我们已经统计了这两对子数组内部的逆序对,因此需要把这两对子数组 排序 如上图(c)所示, 以免在以后的统计过程中再重复统计。
接下来我们统计两个长度为2的子数组子数组之间的逆序对。合并子数组并统计逆序对的过程如下图如下图所示。
我们先用两个指针分别指向两个子数组的末尾,并每次比较两个指针指向的数字。如果第一个子数组中的数字大于第二个数组中的数字,则构成逆序对,并且逆序对的数目等于第二个子数组中剩余数字的个数,如下图(a)和(c)所示。如果第一个数组的数字小于或等于第二个数组中的数字,则不构成逆序对,如图b所示。每一次比较的时候,我们都把较大的数字从后面往前复制到一个辅助数组中,确保 辅助数组(记为copy) 中的数字是递增排序的。在把较大的数字复制到辅助数组之后,把对应的指针向前移动一位,接下来进行下一轮比较。

过程:先把数组分割成子数组,先统计出子数组内部的逆序对的数目,然后再统计出两个相邻子数组之间的逆序对的数目。在统计逆序对的过程中,还需要对数组进行排序。如果对排序算法很熟悉,我们不难发现这个过程实际上就是归并排序。参考代码如下:
 class Solution {
public:
    int InversePairs(vector<int> data) {
       int length=data.size();
        if(length<=0)
            return 0;
       //vector<int> copy=new vector<int>[length];
       vector<int> copy;
       for(int i=0;i<length;i++)
           copy.push_back(data[i]);
       long long count=InversePairsCore(data,copy,0,length-1);
       //delete[]copy;
       return count%1000000007;
    }
    long long InversePairsCore(vector<int> &data,vector<int> &copy,int start,int end)
    {
       if(start==end)
          {
            copy[start]=data[start];
            return 0;
          }
       int length=(end-start)/2;
       long long left=InversePairsCore(copy,data,start,start+length);
       long long right=InversePairsCore(copy,data,start+length+1,end); 
        
       int i=start+length;
       int j=end;
       int indexcopy=end;
       long long count=0;
       while(i>=start&&j>=start+length+1)
          {
             if(data[i]>data[j])
                {
                  copy[indexcopy--]=data[i--];
                  count=count+j-start-length;          //count=count+j-(start+length+1)+1;
                }
             else
                {
                  copy[indexcopy--]=data[j--];
                }          
          }
       for(;i>=start;i--)
           copy[indexcopy--]=data[i];
       for(;j>=start+length+1;j--)
           copy[indexcopy--]=data[j];       
       return left+right+count;
    }
};

php实现数组中的逆序对(归并排序实现:排序 辅助数组)的更多相关文章

  1. 力扣Leetcode 面试题51. 数组中的逆序对 - 归并排序

    在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 示例 1: 输入: [7,5,6,4] 输出: 5 限制: 0 <= ...

  2. 剑指 Offer 51. 数组中的逆序对 + 归并排序 + 树状数组

    剑指 Offer 51. 数组中的逆序对 Offer_51 题目描述 方法一:暴力法(双层循环,超时) package com.walegarrett.offer; /** * @Author Wal ...

  3. 九度OJ 1348 数组中的逆序对 -- 归并排序

    题目地址:http://ac.jobdu.com/problem.php?pid=1348 题目描述: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求 ...

  4. 求数组中的逆序对的数量----剑指offer36题

    在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数: 如数组{7,5,6,4},逆序对总共有5对,{7,5},{7,6},{7, ...

  5. 九度OJ 1348:数组中的逆序对 (排序、归并排序)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2777 解决:656 题目描述: 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组 ...

  6. 剑指Offer——数组中的逆序对(归并排序的应用)

    蛮力: 遍历数组,对每个元素都往前遍历所有元素,如果有发现比它小的元素,就count++. 最后返回count取模. 结果没问题,但超时哈哈哈,只能过50%.   归并法: 看讨论,知道了这道题的经典 ...

  7. 归并排序(归并排序求逆序对数)--16--归并排序--Leetcode面试题51.数组中的逆序对

    面试题51. 数组中的逆序对 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 示例 1: 输入: [7,5,6,4] 输出 ...

  8. MergeSort归并排序和利用归并排序计算出数组中的逆序对

    首先先上LeetCode今天的每日一题(面试题51. 数组中的逆序对): 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. ...

  9. [剑指OFFER] 数组中的逆序对

    题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数.     分析:利用归并排序的思想,分成2部分,每一部分按照从大到 ...

随机推荐

  1. golang panic and recover

    panic 是一个内置函数,当一个函数 F 调用 panic,F 的执行就会停止,F 中 deferred 函数调用会被执行,然后 F 返回控制到它的调用者.这个过程会沿着调用栈执行下去,直到当前 g ...

  2. jmeter分布式测试的坑(转)

    本文转自:https://www.cnblogs.com/lsjdddddd/p/5806077.html 有关jmeter分布式测试的环境配置,大概就是那样,但是每次想要进行jmeter分布式测试的 ...

  3. 洛谷 P1416 攻击火星

    P1416 攻击火星 题目描述 一群外星人将要攻击火星. 火星的地图是一个n个点的无向图.这伙外星人将按照如下方法入侵,先攻击度为0的点(相当于从图中删除掉它),然后是度为1的点,依此类推直到度为n- ...

  4. Docker---(8)Docker启动Redis后访问不了

    原文:Docker---(8)Docker启动Redis后访问不了 版权声明:欢迎转载,请标明出处,如有问题,欢迎指正!谢谢!微信:w1186355422 https://blog.csdn.net/ ...

  5. 多线程在python中的使用 thread

    近期想学习研究一下python中使用多线程,来提高python在爬虫项目中的效率. 如今我们在网页上查询到在python中使用的多线程的使用大多数都是使用的threading模块,可是python中另 ...

  6. 开源企业IM-免费企业即时通讯-ENTBOOST V2014.177 Windows版本号正式公布

    ENTBOOST,VERSION 2014.177 LINUX 版本号公布.主要添加Android安卓手机开发接口.企业IM接口,JQUERY开发接口,PCclient部分BUG修正: 下版本号更新时 ...

  7. 跟我一起学extjs5(42--单个模块的数据新增方式)

    跟我一起学extjs5(42--单个模块的数据新增方式)         前面的章节中已经增加了一个自己定义的模块,而且能够进行数据的新增.改动.删除的操作了,在这个基础上就能够大作文章了. 这一节来 ...

  8. WebClient HttpWebRequest从网页中获取请求数据

    WebClient HttpWebRequest //HttpWebRequest webRequest = (HttpWebRequest)WebRequest.Create(urlAddress) ...

  9. Linux字符界面安装图形界面XWindow

    https://jingyan.baidu.com/article/219f4bf790f4c7de442d3825.html

  10. 使用Surging Mqtt 开发基于WS的MqttClient客户端

    原文:使用Surging Mqtt 开发基于WS的MqttClient客户端 最近一段时间由于要做一套智能设备系统,而有幸了解到Surging中的Mqtt broker,学习了很多东西本篇文章基于Su ...