(2016北京集训十)【xsy1528】azelso - 概率期望dp

北京集训的题都是好题啊~~(于是我爆0了)
注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了。。。
设$f_i$表示从$i$出发不回到$i$直接到达终点的概率,显然期望步数就是$\frac{1}{f_i}$;
考虑转移,设下一个事件概率为$p$,则
如果下一个事件是敌人:$f_i=f_{i+1}*p$
如果下一个事件是旗子:
$f_{i}=(1-p)*(1-f_{i+1})*(1+p*(1-f_{i+1})+p^{2}*(1-f_{i+1})^{2}+...)=(1-p)*\frac{1-f_{i+1}}{1-p*(1-f_{i+1})}$
第二个式子的表示的是下一次被打死并且没拿到旗子的概率;
但是还有一点小问题:$1-p*(1-f_{i+1})$可能为0
稍微变形一下:$\frac{f_{i+1}}{p}=(1-p)*f_{i+1}+p$
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define inf 2147483647
#define eps 1e-9
#define mod 1000000007
using namespace std;
typedef long long ll;
ll h,n,ans,p[],a,b,f[],inv[],op[];
char ord[];
ll fastpow(ll x,ll y){
int ret=;
for(;y;y>>=,x=x*x%mod){
if(y&)ret=ret*x%mod;
}
return ret;
}
int main(){
scanf("%lld%lld",&h,&n);
for(int i=;i<=n;i++){
scanf("%s",ord);
if(ord[]=='F')op[i]=;
else op[i]=;
scanf("%lld%lld%lld",&p[i],&a,&b);
inv[i]=a*fastpow(b,mod-)%mod;
}
f[n]=;
ans=h-p[n];
for(int i=n-;i>=;i--){
if(op[i+])f[i]=f[i+]*fastpow(inv[i+],mod-)%mod;
else f[i]=((mod+-inv[i+])*f[i+]%mod+inv[i+])%mod;
ans=(ans+(p[i+]-p[i]+mod)%mod*f[i]%mod)%mod;
}
printf("%lld",ans);
return ;
}
(2016北京集训十)【xsy1528】azelso - 概率期望dp的更多相关文章
- [2016北京集训测试赛5]azelso-[概率/期望dp]
Description Solution 感谢大佬的博客https://www.cnblogs.com/ywwyww/p/8511141.html 定义dp[i]为[p[i],p[i+1])的期望经过 ...
- 【XSY1528】azelso 概率&期望DP
题目大意 有一条很长很长的路(出题人的套路),你在\(0\)位置,你要去\(h\)位置. 路上有一些不同的位置上有敌人,你要和他战斗,你有\(p\)的概率赢.若你赢,则你可以走过去,否则你会死.还 ...
- (2016北京集训十四)【xsy1557】task
题解: 限制可以看成图状结构,每个任务的对物品数量的影响可以看成权值,只不过这个权值用一个五元组来表示. 那么题意要求的就是最大权闭合子图,网络流经典应用. 代码: #include<algor ...
- (2016北京集训十四)【xsy1556】股神小D - LCT
题解: 题解居然是LCT……受教了 把所有区间按照端点排序,动态维护目前有重叠的区间,用LCT维护即可. 代码: #include<algorithm> #include<iostr ...
- (2016北京集训十二)【xsy1542】疯狂求导
题解: 这题看起来很难...但是实际上并没有想象中的那么难 第一眼看上去不会求导公式怎么办?不要紧,题目背景非常良心的给出了题目中的导数计算公式 求完导合并同类项很恶心怎么办?不要紧,样例解释说明了不 ...
- (2016北京集训十)【xsy1530】小Q与内存
一道很有意思的神题~ 暴力平衡树的复杂度很对(并不),但是$2^{30}$的空间一脸屎 这题的正解是一个类似线段树的数据结构,我觉得很有创新性Orz 首先可以想到一种暴力就是用一个点代表一个区间,然后 ...
- (2016北京集训十)【xsy1529】小Q与进位制 - 分治FFT
题意很简单,就是求这个数... 其实场上我想出了分治fft的正解...然而不会打...然后打了个暴力fft挂了... 没啥好讲的,这题很恶心,卡常卡精度还爆int,要各种优化,有些dalao写的很复杂 ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp
题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...
随机推荐
- Pyhton学习——Day41
#一个完整的 JavaScript 实现是由以下 3 个不同部分组成的:# 核心(ECMAScript)# 文档对象模型(DOM) Document object model (整合js,css,ht ...
- HDU1061 - Rightmost Digit
Given a positive integer N, you should output the most right digit of N^N. Input The input contains ...
- [CodeForces]529B Group Photo 2
AK爷GhostCai的电脑又蓝屏了Orz 贪心题,确定一个maxh,限定h不大于一个值.枚举maxh. check的时候的细节很多: 1.h>maxh但w<maxh交换的时候需要占用交换 ...
- [读书笔记] R语言实战 (二) 创建数据集
R中的数据结构:标量,向量,数组,数据框,列表 1. 向量:储存数值型,字符型,或者逻辑型数据的一维数组,用c()创建 ** R中没有标量,标量以单元素向量的形式出现 2. 矩阵:二维数组,和向量一 ...
- BlankUtil(判断是否为空和去除多余空格)
package com.drn.core.util; import java.io.Serializable; import java.util.Map; import java.util.Prope ...
- php读写excel —— PhpSpreadsheet组件
前言 PhpSpreadsheet是一个纯PHP类库,它提供了一组类,允许您从不同的电子表格文件格式(如Excel和LibreOffice Calc)读取和写入.用PHP读取Excel.CSV文件 还 ...
- django-4-模板标签,模板继承
<<<模板标签>>> {% for %}{% endfor %} 循环 {% if %}{% elif %}{% else %}{% endif %} 判断 {% ...
- Java 获取环境变量
Java 获取环境变量Java 获取环境变量的方式很简单: System.getEnv() 得到所有的环境变量System.getEnv(key) 得到某个环境变量的值 由于某些需要,可能要下载某些 ...
- Scratch单机版下载
Scratch单机版下载 这两个地址速度比较快: Adobe Air:http://7dx.pc6.com/wwb5/AdobeAIR2800127.zip Scratch :http://7dx.p ...
- Android,iOS打开手机QQ与指定用户聊天界面
在浏览器中能够通过JS代码打开QQ并弹出聊天界面.一般作为客服QQ使用. 而在移动端腾讯貌似没有发布提供相似API,可是却能够使用schema模式来启动手机QQ. 下面为详细代码: Android: ...