Description

  L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0);2:工厂i目前已有成品数量Pi;:3:在工厂i建立仓库的费用Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。

Input

  第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。

Output

  仅包含一个整数,为可以找到最优方案的费用。

Sample Input

3
0 5 10
5 3 100
9 6 10

Sample Output

32

HINT

  在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。
  【数据规模】
  对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。 

Source

Solution

  设$f[i]$表示在第$i$个工厂建仓库时前$i$个工厂的最小花费,则:

  $\displaystyle f[i]=min\left\{f[j]+\sum_{k=j+1}^{i}(c[i]-c[k])*p[k]\right\}+c[i]$

    $\displaystyle=min\left\{f[j]+c[i]*\sum_{k=j+1}^{i}p[k]-\sum_{k=j+1}^{i}c[k]*p[k]\right\}+c[i]$

  令$\displaystyle sump[i]=\sum_{j=1}^i p[j]$,$\displaystyle sumxp[i]=\sum_{j=1}^i x[j]*p[j]$,则:

  $\displaystyle f[i]=min\big\{\ f[j]+x[i]*(sump[i]-sump[j])-(sumxp[i]-sumxp[j])\ \big\}+c[i]$

  据说$f[i]$满足决策单调性,辣么这一步的证明跳过= =b

  设$j<k$且$k$比$j$优,那么最后化成的斜率式是这样的:$\displaystyle\frac{(f[k]+sumxp[k])-(f[j]+sumxp[j])}{sump[k]-sump[j]}<c[i]$

  维护下凸壳搞一搞就行了

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int x[], p[], c[], q[];
ll sump[], sumxp[], f[]; double slope(int i)
{
return 1.0 * (f[q[i]] + sumxp[q[i]] - f[q[i - ]] - sumxp[q[i - ]]) / (sump[q[i]] - sump[q[i - ]]);
} int main()
{
int n, front = , back = ;
scanf("%d", &n);
for(int i = ; i <= n; ++i)
{
scanf("%d%d%d", x + i, p + i, c + i);
sump[i] = sump[i - ] + p[i];
sumxp[i] = sumxp[i - ] + (ll)x[i] * p[i];
}
for(int i = ; i <= n; ++i)
{
while(front < back - && slope(front + ) < x[i])
++front;
int j = q[front + ];
f[i] = f[j] + x[i] * (sump[i] - sump[j]) - sumxp[i] + sumxp[j] + c[i];
q[++back] = i;
while(front < back - && slope(back) < slope(back - ))
q[--back] = i;
}
printf("%lld\n", f[n]);
return ;
}

[BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)的更多相关文章

  1. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  2. BZOJ1096 [ZJOI2007]仓库建设——斜率优化

    方程: $\Large f(i)=min(f(j)+\sum\limits_{k=j+1}^{i}(x_i-x_k)*p_k)+c_i$ 显然这样的方程复杂度为$O(n^3)$极限爆炸,所以我们要换一 ...

  3. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  4. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  5. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  6. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  7. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  8. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  9. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

随机推荐

  1. phpMyAdmin的使用

    phpMyAdmin的使用 安装MySQL数据库后,用户即可在命令行提示符下进行创建数据库和数据表等各种操作,但这种方法非常麻烦,而且需要有专业的SQL语言知识.PHP官方开发了一个类似于SQL Se ...

  2. css 图片增加模糊效果

    img{ -webkit-filter: blur(5px); -moz-filter: blur(5px); -ms-filter: blur(5px); filter: blur(5px); }

  3. win7局域网共享文件

    调整共享文件所在电脑设置: 1. 关闭防火墙 2. 更改网络设置 ①打开网络和共享中心 ②进入"选择家庭组和共享选项" ③进入"更改高级共享设置" ④调整设置并 ...

  4. ubuntu16 ftp 服务 vsftp 配置

    转载:沐心_ 地址:http://bbs.csdn.net/topics/392186116------------------------------------------------------ ...

  5. springboot入门_helloworld

    开始学习springboot,在此做记录,有不正确之处,还望读者指正. springboot框架的设计目的是用来简化新Spring应用的初始环境搭建以及开发过程.主要体现有:1 xml配置文件,使用s ...

  6. bzoj 2120 带修改莫队

    2120: 数颜色 Time Limit: 6 Sec  Memory Limit: 259 MBSubmit: 7340  Solved: 2982[Submit][Status][Discuss] ...

  7. 阶乘之和 输入n,计算S=1!+2!+3!+…+n!的末6位(不含前导0)。n≤10 6 ,n!表示 前n个正整数之积。

    阶乘之和输入n,计算S=1!+2!+3!+…+n!的末6位(不含前导0).n≤10 6 ,n!表示前n个正整数之积.样例输入:10样例输出: package demo; import java.uti ...

  8. POJ - 1190 生日蛋糕 dfs+剪枝

    思路:说一下最重要的剪枝,如果当前已经使用了v的体积,为了让剩下的表面积最小,最好的办法就是让R尽量大,因为V = πR 2H,A' = 2πRH,A' = V / R * 2 ,最大的R一定是取当前 ...

  9. probabilistic robotics_bayes filter

    贝叶斯滤波 执行测量后的后验概率: 执行测量前的先验概率: 执行测量后的后验概率推导 根据式2.23的推导方式 可推出 假定xt是complete,即xt可以完全决定测量结果,那么则有2.56式: 带 ...

  10. (2018干货系列五)最新UI设计学习路线整合

    怎么学UI全链路设计 全链路设计师是参与整个商业链条,为每个会影响用户体验的地方提供设计的可解决方案,最后既满足了商业目标,又提升了产品的用户体验和设计质量,与平面设计.UI设计彻底区分开来,是真正的 ...