原文转自:http://blog.csdn.net/shuzfan/article/details/50723877

本次所讲的内容为Batch Normalization,简称BN,来源于《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》,是一篇很好的paper。

1-Motivation

作者认为:网络训练过程中参数不断改变导致后续每一层输入的分布也发生变化,而学习的过程又要使每一层适应输入的分布,因此我们不得不降低学习率、小心地初始化。作者将分布发生变化称之为 internal covariate shift。

大家应该都知道,我们一般在训练网络的时会将输入减去均值,还有些人甚至会对输入做白化等操作,目的是为了加快训练。为什么减均值、白化可以加快训练呢,这里做一个简单地说明:

首先,图像数据是高度相关的,假设其分布如下图a所示(简化为2维)。由于初始化的时候,我们的参数一般都是0均值的,因此开始的拟合y=Wx+b,基本过原点附近,如图b红色虚线。因此,网络需要经过多次学习才能逐步达到如紫色实线的拟合,即收敛的比较慢。如果我们对输入数据先作减均值操作,如图c,显然可以加快学习。更进一步的,我们对数据再进行去相关操作,使得数据更加容易区分,这样又会加快训练,如图d。 

白化的方式有好几种,常用的有PCA白化:即对数据进行PCA操作之后,在进行方差归一化。这样数据基本满足0均值、单位方差、弱相关性。作者首先考虑,对每一层数据都使用白化操作,但分析认为这是不可取的。因为白化需要计算协方差矩阵、求逆等操作,计算量很大,此外,反向传播时,白化操作不一定可导。于是,作者采用下面的Normalization方法。

2-Normalization via Mini-Batch Statistics

数据归一化方法很简单,就是要让数据具有0均值和单位方差,如下式: 
 
但是作者又说如果简单的这么干,会降低层的表达能力。比如下图,在使用sigmoid激活函数的时候,如果把数据限制到0均值单位方差,那么相当于只使用了激活函数中近似线性的部分,这显然会降低模型表达能力。 

为此,作者又为BN增加了2个参数,用来保持模型的表达能力。 
于是最后的输出为: 
 
上述公式中用到了均值E和方差Var,需要注意的是理想情况下E和Var应该是针对整个数据集的,但显然这是不现实的。因此,作者做了简化,用一个Batch的均值和方差作为对整个数据集均值和方差的估计。 
整个BN的算法如下: 
 
求导的过程也非常简单,有兴趣地可以自己再推导一遍或者直接参见原文。

测试

实际测试网络的时候,我们依然会应用下面的式子: 
 
特别注意: 这里的均值和方差已经不是针对某一个Batch了,而是针对整个数据集而言。因此,在训练过程中除了正常的前向传播和反向求导之外,我们还要记录每一个Batch的均值和方差,以便训练完成之后按照下式计算整体的均值和方差: 

BN before or after Activation

作者在文章中说应该把BN放在激活函数之前,这是因为Wx+b具有更加一致和非稀疏的分布。但是也有人做实验表明放在激活函数后面效果更好。这是实验链接,里面有很多有意思的对比实验:https://github.com/ducha-aiki/caffenet-benchmark

3-Experiments

作者在文章中也做了很多实验对比,我这里就简单说明2个。 
下图a说明,BN可以加速训练。图b和c则分别展示了训练过程中输入数据分布的变化情况。 

下表是一个实验结果的对比,需要注意的是在使用BN的过程中,作者发现Sigmoid激活函数比Relu效果要好。 

解读Batch Normalization的更多相关文章

  1. Deep Learning 27:Batch normalization理解——读论文“Batch normalization: Accelerating deep network training by reducing internal covariate shift ”——ICML 2015

    这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network tr ...

  2. 全面解读Group Normalization,对比BN,LN,IN

    前言 Face book AI research(FAIR)吴育昕-何恺明联合推出重磅新作Group Normalization(GN),提出使用Group Normalization 替代深度学习里 ...

  3. 从Bayesian角度浅析Batch Normalization

    前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhih ...

  4. [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization

    课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ________ ...

  5. 深度学习网络层之 Batch Normalization

    Batch Normalization Ioffe 和 Szegedy 在2015年<Batch Normalization: Accelerating Deep Network Trainin ...

  6. Batch Normalization

    一.BN 的作用 1.具有快速训练收敛的特性:采用初始很大的学习率,然后学习率的衰减速度也很大 2.具有提高网络泛化能力的特性:不用去理会过拟合中drop out.L2正则项参数的选择问题 3.不需要 ...

  7. 使用TensorFlow中的Batch Normalization

    问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题.但是却不能保证在训练过程中不出现该问题, ...

  8. 【深度学习】批归一化(Batch Normalization)

    BN是由Google于2015年提出,这是一个深度神经网络训练的技巧,它不仅可以加快了模型的收敛速度,而且更重要的是在一定程度缓解了深层网络中"梯度弥散"的问题,从而使得训练深层网 ...

  9. Batch Normalization&Dropout浅析

    一. Batch Normalization 对于深度神经网络,训练起来有时很难拟合,可以使用更先进的优化算法,例如:SGD+momentum.RMSProp.Adam等算法.另一种策略则是高改变网络 ...

随机推荐

  1. 算子:sample(false, 0.1)抽样数据

    抽样示例操作: scala> import org.apache.spark.sql.hive.HiveContext import org.apache.spark.sql.hive.Hive ...

  2. html<!DOCTYPE>声明标签

    html<!DOCTYPE>声明标签 <DOCTYPE>声明是html文档的第一行,位于<html>标签之前 <DOCTYPE>声明不是html标签,他 ...

  3. Django REST framework+Vue 打造生鲜超市(九)

    十.购物车.订单管理和支付功能 10.1.添加商品到购物车 (1)trade/serializer.py # trade/serializer.py __author__ = 'derek' from ...

  4. css3 box-shadow阴影(外阴影与外发光)

    基础说明:     外阴影:box-shadow: X轴  Y轴  Rpx  color;     属性说明(顺序依次对应): 阴影的X轴(可以使用负值)    阴影的Y轴(可以使用负值)    阴影 ...

  5. 九,微信小程序开发浅谈

    最近在帮朋友做一款微信小程序(后面统称为小程序),有简单的交互,以及分享和支付功能.下面就简单的对小程序开发做一个简单的介绍,希望可以帮助大家!!! 当前的小程序我们是在windows系统里开发的,如 ...

  6. [LeetCode] Design Log Storage System 设计日志存储系统

    You are given several logs that each log contains a unique id and timestamp. Timestamp is a string t ...

  7. java修改文件内容

    文件的读和写,大家都不陌生,但是修改呢?按照普通的读写流去修改的话,只能全部读取出来,在内存中修改好后,全部写进去,这样对于文件内容过多的时,性能很低. 最近在遇到这个问题的时候,发现RandomAc ...

  8. 空间漫游(SAC大佬的测试)

    题目描述由于球哥和巨佬嘉诚交了很多保护费,我们有钱进行一次 d 维空间漫游.d 维空间中有 d 个正交坐标轴,可以用这些坐标轴来描述你在空间中的位置和移动的方向.例如,d = 1 时,空间是一个数轴, ...

  9. hdu 2871 线段树(各种操作)

    Memory Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  10. [bzoj4824][Cqoi2017]老C的键盘

    来自FallDream的博客,未经允许,请勿转载,谢谢. 老 C 是个程序员.     作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序在某种 ...