解读Batch Normalization
原文转自:http://blog.csdn.net/shuzfan/article/details/50723877
本次所讲的内容为Batch Normalization,简称BN,来源于《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》,是一篇很好的paper。
1-Motivation
作者认为:网络训练过程中参数不断改变导致后续每一层输入的分布也发生变化,而学习的过程又要使每一层适应输入的分布,因此我们不得不降低学习率、小心地初始化。作者将分布发生变化称之为 internal covariate shift。
大家应该都知道,我们一般在训练网络的时会将输入减去均值,还有些人甚至会对输入做白化等操作,目的是为了加快训练。为什么减均值、白化可以加快训练呢,这里做一个简单地说明:
首先,图像数据是高度相关的,假设其分布如下图a所示(简化为2维)。由于初始化的时候,我们的参数一般都是0均值的,因此开始的拟合y=Wx+b,基本过原点附近,如图b红色虚线。因此,网络需要经过多次学习才能逐步达到如紫色实线的拟合,即收敛的比较慢。如果我们对输入数据先作减均值操作,如图c,显然可以加快学习。更进一步的,我们对数据再进行去相关操作,使得数据更加容易区分,这样又会加快训练,如图d。
白化的方式有好几种,常用的有PCA白化:即对数据进行PCA操作之后,在进行方差归一化。这样数据基本满足0均值、单位方差、弱相关性。作者首先考虑,对每一层数据都使用白化操作,但分析认为这是不可取的。因为白化需要计算协方差矩阵、求逆等操作,计算量很大,此外,反向传播时,白化操作不一定可导。于是,作者采用下面的Normalization方法。
2-Normalization via Mini-Batch Statistics
数据归一化方法很简单,就是要让数据具有0均值和单位方差,如下式:
但是作者又说如果简单的这么干,会降低层的表达能力。比如下图,在使用sigmoid激活函数的时候,如果把数据限制到0均值单位方差,那么相当于只使用了激活函数中近似线性的部分,这显然会降低模型表达能力。
为此,作者又为BN增加了2个参数,用来保持模型的表达能力。
于是最后的输出为:
上述公式中用到了均值E和方差Var,需要注意的是理想情况下E和Var应该是针对整个数据集的,但显然这是不现实的。因此,作者做了简化,用一个Batch的均值和方差作为对整个数据集均值和方差的估计。
整个BN的算法如下:
求导的过程也非常简单,有兴趣地可以自己再推导一遍或者直接参见原文。
测试
实际测试网络的时候,我们依然会应用下面的式子:
特别注意: 这里的均值和方差已经不是针对某一个Batch了,而是针对整个数据集而言。因此,在训练过程中除了正常的前向传播和反向求导之外,我们还要记录每一个Batch的均值和方差,以便训练完成之后按照下式计算整体的均值和方差:
BN before or after Activation
作者在文章中说应该把BN放在激活函数之前,这是因为Wx+b具有更加一致和非稀疏的分布。但是也有人做实验表明放在激活函数后面效果更好。这是实验链接,里面有很多有意思的对比实验:https://github.com/ducha-aiki/caffenet-benchmark
3-Experiments
作者在文章中也做了很多实验对比,我这里就简单说明2个。
下图a说明,BN可以加速训练。图b和c则分别展示了训练过程中输入数据分布的变化情况。
下表是一个实验结果的对比,需要注意的是在使用BN的过程中,作者发现Sigmoid激活函数比Relu效果要好。
解读Batch Normalization的更多相关文章
- Deep Learning 27:Batch normalization理解——读论文“Batch normalization: Accelerating deep network training by reducing internal covariate shift ”——ICML 2015
这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network tr ...
- 全面解读Group Normalization,对比BN,LN,IN
前言 Face book AI research(FAIR)吴育昕-何恺明联合推出重磅新作Group Normalization(GN),提出使用Group Normalization 替代深度学习里 ...
- 从Bayesian角度浅析Batch Normalization
前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhih ...
- [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization
课程主页:http://cs231n.stanford.edu/ Introduction to neural networks -Training Neural Network ________ ...
- 深度学习网络层之 Batch Normalization
Batch Normalization Ioffe 和 Szegedy 在2015年<Batch Normalization: Accelerating Deep Network Trainin ...
- Batch Normalization
一.BN 的作用 1.具有快速训练收敛的特性:采用初始很大的学习率,然后学习率的衰减速度也很大 2.具有提高网络泛化能力的特性:不用去理会过拟合中drop out.L2正则项参数的选择问题 3.不需要 ...
- 使用TensorFlow中的Batch Normalization
问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题.但是却不能保证在训练过程中不出现该问题, ...
- 【深度学习】批归一化(Batch Normalization)
BN是由Google于2015年提出,这是一个深度神经网络训练的技巧,它不仅可以加快了模型的收敛速度,而且更重要的是在一定程度缓解了深层网络中"梯度弥散"的问题,从而使得训练深层网 ...
- Batch Normalization&Dropout浅析
一. Batch Normalization 对于深度神经网络,训练起来有时很难拟合,可以使用更先进的优化算法,例如:SGD+momentum.RMSProp.Adam等算法.另一种策略则是高改变网络 ...
随机推荐
- [论文阅读] A Discriminative Feature Learning Approach for Deep Face Recognition (Center Loss)
原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每 ...
- vue基础特性
在这里我们主要是讲解一些vue实例的属性和一些基础的指令 vue实例属性: 其实和我们之前所学的对象的属性是相似的东西 vue的基础指令: 对于指令,大家可能之前么有接触过相关的概念,其实大家可以这样 ...
- rem ~~ 你懂了吗?
前端 开发的适配中 rem 有着举足轻重的位置,用好了,你就是神,用不好 ,直接GG:不好懵懵懂懂,要头头是道. 言归正传: 首先我们需要了解,css 布局的单位常用的有一下几种: 1.px (pix ...
- 自己使用Vue全家桶问题合集(很多eslint规范问题)
遇到很多问题一一道来. 1.vue报错 Do not use built-in or reserved HTML elements as component id:header 组件,不能和html标 ...
- 数据结构与算法 —— 链表linked list(04)
我们在上篇文章里面提到了链表的翻转,给定一个链表,对每两个相邻的节点作交换,并返回头节点,今天的这道题是它的升级版,如下: k个一组翻转链表 给出一个链表,每 k 个节点一组进行翻转,并返回翻转后的链 ...
- Python基础学习(第一周)
Python是一门什么语言 编译型和解释型 通俗来讲,编译型就是一次性把所有程序写的代码都转换成机器可以识别的语言(机器语言),即可执行文件.exe: 解释型就是程序每执行到某一条指令,则会有有个称之 ...
- 关于mysql驱动包的in语句的bug
今天发现一个MySQL驱动包执行in语句的一个bug,也许会有很多人还不知道,那么跟大家分享一下. 驱动包版本:mysql-connector-java-5.1.36.jar 在使用dbutils执行 ...
- 用js来实现那些数据结构10(集合02-集合的操作)
前一篇文章我们一起实现了自定义的set集合类.那么这一篇我们来给set类增加一些操作方法.那么在开始之前,还是有必要解释一下集合的操作有哪些.便于我们更快速的理解代码. 1.并集:对于给定的两个集合, ...
- [HNOI 2016]最小公倍数
Description 题库链接 给定一张 \(N\) 个顶点 \(M\) 条边的无向图(顶点编号为 \(1,2,\cdots,n\) ),每条边上带有权值.所有权值都可以分解成 \(2^a\time ...
- ●BZOJ 2006 NOI 2010 超级钢琴
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2006 题解: RMQ + 优先队列 (+ 前缀) 记得在一两个月前,一次考试考了这个题目的简 ...