BZOJ 2986: Non-Squarefree Numbers [容斥原理 二分]
题意:求第\(n \le 10^{10}\)个不是无平方因子数
二分答案,
容斥一下,0个质数的平方因子-1个.....
枚举\(\sqrt{mid}\)的平方因子乘上莫比乌斯函数,最后求出无平方因子数的个数取补集
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=3e5+5;
typedef long long ll;
inline ll read(){
char c=getchar();ll x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
ll k;
int notp[N], p[N], mu[N];
void sieve(int n) {
mu[1] = 1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, mu[i] = -1;
for(int j=1; j<=p[0] && i*p[j]<=n; j++) {
notp[i*p[j]] = 1;
if(i%p[j] == 0) {mu[i*p[j]]=0; break;}
mu[i*p[j]] = -mu[i];
}
}
}
bool check(ll n) {
ll m=sqrt(n), ans=0; //printf("hi %lld %lld\n",n,m);
for(ll i=1; i<=m; i++) ans += mu[i]*(n/(i*i));
ans = n-ans; //printf("check %lld %lld\n",n,ans);
return ans>=k;
}
int main() {
freopen("in","r",stdin);
sieve(N-1);
k=read();
ll l=1, r=k<<2, ans=0;
while(l<=r) {
ll mid = (l+r)>>1;
if(check(mid)) ans=mid, r=mid-1;
else l=mid+1;
}
printf("%lld\n",ans);
}
BZOJ 2986: Non-Squarefree Numbers [容斥原理 二分]的更多相关文章
- 【BZOJ 2986】 莫比乌斯函数+容斥原理
2986: Non-Squarefree Numbers Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 337 Solved: 156 Descri ...
- 容斥原理算法总结(bzoj 2986 2839)
容斥原理是一个从小学就开始学习的算法.但是很多难题现在都觉得做的十分吃力. 容斥原理大概有两种表现形式,一种是按照倍数进行容斥,这个东西直接用莫比乌斯函数就可以了. #include<iostr ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- BZOJ 3343: 教主的魔法(分块+二分查找)
BZOJ 3343: 教主的魔法(分块+二分查找) 3343: 教主的魔法 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1172 Solved: ...
- Happy 2006 POJ - 2773 容斥原理+二分
题意: 找到第k个与m互质的数 题解: 容斥原理求区间(1到r)里面跟n互质的个数时间复杂度O(sqrt(n))- 二分复杂度也是O(log(n)) 容斥原理+二分这个r 代码: 1 #include ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- 【BZOJ】2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理+二分)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 我觉得网上很多题解都没说清楚...(还是我太弱了? 首先我们可以将问题转换为判定性问题,即给出 ...
- bzoj 2986: Non-Squarefree Numbers【容斥+莫比乌斯函数】
看到\( 10^10 \)的范围首先想到二分,然后把问题转化为判断\( [1,n] \)内有多少个是某个质数的平方和的数. 所以应该是加上是一个质数的平方的个数减去是两个质数的平方的个数加上是三个质数 ...
- [BZOJ 1044] [HAOI2008] 木棍分割 【二分 + DP】
题目链接:BZOJ 1044 第一问是一个十分显然的二分,贪心Check(),很容易就能求出最小的最大长度 Len . 第二问求方案总数,使用 DP 求解. 使用前缀和,令 Sum[i] 为前 i 根 ...
随机推荐
- 微信小程序监听input输入并取值
小程序的事件分为两种,冒泡和非冒泡事件,像<form/>的submit事件,<input/>的input事件,<scroll-view/>的scroll事件等非冒泡 ...
- Dockerfile中CMD和ENTRYPOINT的区别
当启动一个容器时,CMD和ENTRYPOINT都可以用来执行启动命令.但它们的具体用法还是有一些区别: 1. Dockerfile必须至少指定CMD或者ENTRYPOINT其中的一个. 2. ENTR ...
- 自己实现一个each迭代器
什么是迭代器? 其实就是对一个对象内部进行遍历的方法,比如jquery的each方法,或者原生js的foreach方法. 迭代器的特点 针对迭代器,这里有几个特点: ☑ 访问一个聚合对象的内容而无需暴 ...
- Sass嵌套
Sass 中还提供了选择器嵌套功能,但这也并不意味着你在 Sass 中的嵌套是无节制的,因为你嵌套的层级越深,编译出来的 CSS 代码的选择器层级将越深,这往往是大家不愿意看到的一点. 选择器嵌套为样 ...
- node & grunt path处理相关
在nodejs平台上写一些工具或者服务, 有很多需求会涉及到对目录或者文件路径的处理和操作.整理一些常用的处理path的方法 1.global __dirname Example: running n ...
- destoon 默认广告位代码
<img src="http://www.testinstrument.cn/skin/default/jiurong/img/banner.png" alt="& ...
- Linux pmstat命令
mpstat是linux一款实时系统监控工具.其报告与CPU的一些统计信息,这些信息存放在/proc/stat文件中.在多CPU系统里,其不但能查看所有CPU的平均状况信息,而且能够查看特定CPU ...
- 【笔记】npm 安装 vue-cli
最近完成了慕课网的 高仿饿了么webApp 课程,对于vue 的认识有了更深一步的认识,但是其脚手架 vue-cli 的安装流程还是有点懵,于是今天重新试了一遍加深认识 网上参考过一些有用的教程在这里 ...
- Linuxc - gdb调试程序
指针实现变量交换值 #include <stdio.h> void change(int *a,int *b) { int tmp = *a; *a = *b;// 将指针a所在地址的值, ...
- python下划线作用初识
单下划线(例:_textchar) 以单下划线做前缀的名称指定了这个名称是"私有的".在 有些 导入import * 的场景中,下一个使用你代码的人(或者你本人)会明白这个名称仅内 ...