我眼中的支持向量机(SVM)
看吴恩达支持向量机的学习视频,看了好几遍,才有一点的理解,梳理一下相关知识。
(1)优化目标:
支持向量机也是属于监督学习算法,先从优化目标开始。
优化目标是从Logistics regression一步步推导过程,推导过程略
这里cost1和cost0函数图像为:
Z是theta的转置和x的内积。当Z>=1时,cost1 = 0. 当Z<=-1时,cost0 = 0.
因为要最小化损失函数
if y = 0 :我们希望Z >=1 (不仅仅要大于零,这里是与逻辑回归相比,如下图)
if y = 0 :我们希望Z <=-1 (不仅仅要小于零,这里是与逻辑回归相比,如下图)
通过这样的对比发现支持向量机的要求要比逻辑回归更加严格,这也说明了支持向量机的安全距离更高。就像下图中黑线,如果你想知道为什么,下一部分将会揭晓。
有的时候样本并没有上图分的那样好,可能有几个点不符合,支持向量机将会对此很敏感,例如下图,这样的分割(红线)并不是我们想要的,这就需要调整参数C的值,当C的值不是很大的时候将会忽略一些异常点,让分割更加合理。
接下来从数学层面上分析,为什么会得到上图的分割
将会对进一步转化,学习向量内积的相关知识,可以转化为
,如下图,表示距离
那么我们替换一下上面的表达式为下图
好,接下来,用一个例子说明,假如要对下图划分,假如,简化问题,使:
如果把它分割成这样,绿色线是决策边界和theta向量成90度夹角:
如果这样分的话,可以看到P1和P2的值相对较小,而要满足这样就会导致theta增大,所以还要进行优化调整。
如果这样分呢,显然距离P1,P2增大了,相应的theta的值也要减小,有人问,为什么要theta减小,别忘了我们最初的目的是让最小,这样做是不是更加合理了呢,所以说支持向量机是一个大间距分类器。
当然,以上都是简单的线性分类,如果变得更复杂点该怎样解决呢?例如
对于这样的样本,你可能会使用多项式来设置假设函数,但是如果特征再多点,像一张图片,那么将会十分麻烦,所以就有了核函数。
根据我的理解,假如你想在地图上确定你现在属于哪一个区域,你需要找到几个地标性建筑,然后把自己的位置和地标建筑进行比较,就能确定了。就是这个道理。
给定一个训练样本x,我们利用x的各个特征与我们预先选定的地标(landmarks)L1,L2,L3的近似程度来选取新的特征f1,f2,f3。
变换用的核函数有很多,这里使用高斯核函数,,也就是x距离L1近了为1,远了为0,其它也是一样道理。
假如我们已经知道theta1,theta2,theta3的值,那么给一个测试样本x,根据高斯核函数计算出三个特征值。大于零预测y值为1,小于零为0,如下图所示。
如何得到地标,可以把训练集中的样本点当成地标,这样
m表示训练集元素的个数。这样损失函数为:
当然还可以选择其他核函数。
我眼中的支持向量机(SVM)的更多相关文章
- 机器学习之支持向量机—SVM原理代码实现
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决 ...
- 【IUML】支持向量机SVM
从1995年Vapnik等人提出一种机器学习的新方法支持向量机(SVM)之后,支持向量机成为继人工神经网络之后又一研究热点,国内外研究都很多.支持向量机方法是建立在统计学习理论的VC维理论和结构风险最 ...
- 机器学习:Python中如何使用支持向量机(SVM)算法
(简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异 ...
- 以图像分割为例浅谈支持向量机(SVM)
1. 什么是支持向量机? 在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点 ...
- 机器学习算法 - 支持向量机SVM
在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM. SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果. [案 ...
- 支持向量机SVM——专治线性不可分
SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原 ...
- 一步步教你轻松学支持向量机SVM算法之案例篇2
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...
- 一步步教你轻松学支持向量机SVM算法之理论篇1
一步步教你轻松学支持向量机SVM算法之理论篇1 (白宁超 2018年10月22日10:03:35) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...
- OpenCV 学习笔记 07 支持向量机SVM(flag)
1 SVM 基本概念 本章节主要从文字层面来概括性理解 SVM. 支持向量机(support vector machine,简SVM)是二类分类模型. 在机器学习中,它在分类与回归分析中分析数据的监督 ...
- OpenCV支持向量机(SVM)介绍
支持向量机(SVM)介绍 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 CvSVM::train 训练一个SVM分类器, 以及用 CvSVM::predict 测试训练结果. 什么是支持向 ...
随机推荐
- 浅析Springboot自动配置
首先我们先来看springboot的主程序类,主程序类中使用@SpringBootApplication注解来标记说明这是一个springboot应用,查看该注解源码如下图: 图中的@EnableAu ...
- MySQL索引设计需要考虑哪些因素?
索引小知识 篇幅有限,索引的基本知识我们就不赘述了,在此,我们尝试说明其中的一个小点-----B+树与B树的区别到底是什么. InnoDB是使用B+树来实现其索引功能的.在B+树中,内节点(非叶子节点 ...
- c#高级编程_第10版 云盘地址
下载地址 链接:https://pan.baidu.com/s/1u8PcY4RJhRB1yfm-2XaTEQ 密码:159z
- wxPython的简单应用
- 在Windows 10中截取截图的6种方式 简介
在Windows 10中截取截图的6种方式 简介 截图对于不同的目的很重要.它可以用于捕获笔记本电脑上的任何内容的截图.所以,如果你使用Windows 10,你可能不知道如何截图,因为它是比较新的.因 ...
- mysql 的远程链接字符
默认情况下,mysql只允许本地登录,如果要开启远程连接,则需要修改/etc/mysql/my.conf文件. 一.修改/etc/mysql/my.conf找到bind-address = 127.0 ...
- Saltstack_使用指南06_远程执行-指定目标
1. 主机规划 Targeting Minions文档 https://docs.saltstack.com/en/latest/contents.html 另请参见:自动化运维神器之saltstac ...
- 【Linux基础】grep命令
1.简介 grep是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来. 命令格式:grep [option] pattern file 2.常用参数与举例: -e : 使用P ...
- poj 3090 Visible Lattice Points(离线打表)
这是好久之前做过的题,算是在考察欧拉函数的定义吧. 先把欧拉函数讲好:其实欧拉函数还是有很多解读的.emmm,最基础同时最重要的算是,¢(n)表示范围(1, n-1)中与n互质的数的个数 好了,我把规 ...
- 基于密度峰值的聚类(DPCA)
1.背景介绍 密度峰值算法(Clustering by fast search and find of density peaks)由Alex Rodriguez和Alessandro Laio于20 ...