Description:

给你一个n*m的网格,每个格子有一个数字,每行每列只能选一个数字,问所选数字中第k大的数字的最小值是多少

Hint:

\(n \le 250\)

Solution:

显然是二分图模型,但是有附加条件

初看十分不可做,主要原因是这个第k大

我们可以考虑二分一个答案,只对小于这个答案的格子建图

这样就转化成了一个判定性问题,根据每次的最大流与k的大小关系来判断

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e5+5,inf=1e9;
int n,m,k,cnt;
int S,T,ans,sum,a[555][555],hd[mxn],dep[mxn],cur[mxn]; inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;} struct ed {
int to,nxt,w;
}t[mxn<<1]; inline void add(int u,int v,int w) {
t[++cnt]=(ed) {v,hd[u],w}; hd[u]=cnt;
t[++cnt]=(ed) {u,hd[v],0}; hd[v]=cnt;
} int bfs() {
queue<ll > q; q.push(S);
memset(dep,0,sizeof(dep)); dep[S]=1;
for(ll i=S;i<=T;++i) cur[i]=hd[i];
while(!q.empty()) {
ll u=q.front(); q.pop();
for(ll i=hd[u];i!=-1;i=t[i].nxt) {
ll v=t[i].to;// cout<<t[i].w<<"\n";
if(!dep[v]&&t[i].w>0)
dep[v]=dep[u]+1,q.push(v);
}
}
return dep[T];
} int dfs(ll u,int f) {
if(u==T) return f;
for(int &i=cur[u];i!=-1;i=t[i].nxt) {
ll v=t[i].to;
if(dep[v]==dep[u]+1&&t[i].w>0) {
int tp=dfs(v,min(t[i].w,f));
if(tp>0) {
t[i].w-=tp;
t[i^1].w+=tp;
return tp;
}
}
}
return 0;
} void Dinic() {
while(bfs())
while(ll tp=dfs(S,inf))
ans+=tp;
} int main()
{
n=read(); m=read(); k=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
a[i][j]=read();
int l=1,r=inf;
while(l<r) {
int mid=(l+r)>>1; T=n+m+1;
memset(hd,-1,sizeof(hd)); cnt=-1,ans=0;
for(int i=1;i<=n;++i) add(S,i,1);
for(int i=1;i<=m;++i) add(i+n,T,1);
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j) {
if(a[i][j]>mid) continue ;
add(i,j+n,inf);
}
Dinic();
if(ans>=n-k+1) r=mid;
else l=mid+1;
}
printf("%d",r);
return 0;
}

[SCOI2015]小凸玩矩阵的更多相关文章

  1. BZOJ_4443_[Scoi2015]小凸玩矩阵_二分+二分图匹配

    BZOJ_4443_[Scoi2015]小凸玩矩阵_二分+二分图匹配 Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个 ...

  2. 2018.06.30 BZOJ4443: [Scoi2015]小凸玩矩阵(二分加二分图匹配)

    4443: [Scoi2015]小凸玩矩阵 Time Limit: 10 Sec Memory Limit: 128 MB Description 小凸和小方是好朋友,小方给小凸一个N*M(N< ...

  3. BZOJ 4443: [Scoi2015]小凸玩矩阵 最大流

    4443: [Scoi2015]小凸玩矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4443 Description 小凸和小方是好 ...

  4. 【BZOJ4443】[Scoi2015]小凸玩矩阵 二分+二分图最大匹配

    [BZOJ4443][Scoi2015]小凸玩矩阵 Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或 ...

  5. bzoj 4443 [Scoi2015]小凸玩矩阵 网络流,二分

    [Scoi2015]小凸玩矩阵 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1564  Solved: 734[Submit][Status][Di ...

  6. 图论(网络流):[SCOI2015]小凸玩矩阵

    Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或同一列,现小凸想知道选出来的N个数中第K大的数字的最 ...

  7. 【刷题】BZOJ 4443 [Scoi2015]小凸玩矩阵

    Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或同一列,现小凸想知道选出来的N个数中第K大的数字的最 ...

  8. bzoj 4443: [Scoi2015]小凸玩矩阵

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 149  Solved: 81[Submit][Status][Discuss] Description ...

  9. 【bzoj4443】【[Scoi2015]小凸玩矩阵】二分+二分图最大匹配

    (上不了p站我要死了,侵权度娘背锅) Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或同一列,现小凸 ...

  10. [bzoj4443] [loj#2006] [洛谷P4251] [Scoi2015]小凸玩矩阵

    Description 小凸和小方是好朋友,小方给小凸一个 \(N \times M\)( \(N \leq M\) )的矩阵 \(A\) ,要求小秃从其中选出 \(N\) 个数,其中任意两个数字不能 ...

随机推荐

  1. Win8 64位安装Oracle 11g时错

    Win8 64位 安装Oracle时会出现[INS-13001] 环境不满足最低要求 异常原因 11.2.0.1 比Win8 早发行,所以 兼容列表不可能兼容 Win 8. 解决方法一 以管理员身份 ...

  2. chrome浏览器开发常用快捷键之基础篇-遁地龙卷风

    1.标签页和窗口快捷键 打开新的标签页,并跳转到该标签页 Ctrl + t 重新打开最后关闭的标签页,并跳转到该标签页 Ctrl + Shift + t 跳转到下一个打开的标签页 Ctrl + PgD ...

  3. word20161229

    1. launch 英[lɔ:ntʃ]美[lɔntʃ, lɑntʃ]vt. 发射; 发动; [计算机]开始(应用程序); 开展(活动.计划等);vi. 投入; 着手进行; 热衷于…;n. 投掷; 大船 ...

  4. [转]ANR问题分析指南

    引言 每天收到无数的兄弟团队的同事向系统转ANR JIRA,有些一旦遇到App ANR就直接转到系统组,有些简单看一下就转到系统组帮忙看一下.如此浩瀚的JIRA,我们什么事不做也处理不过来,请每个Ap ...

  5. pythonのdjango 信号

    一.内置信号 Django中提供了“信号调度”,用于在框架执行操作时解耦.通俗来讲,就是一些动作发生的时候,信号允许特定的发送者去提醒一些接受者. Model signals pre_init # d ...

  6. springboot整合springdata-jpa

    1.简介  SpringData : Spring 的一个子项目.用于简化数据库访问,支持NoSQL 和 关系数据存储.其主要目标是使数据库的访问变得方便快捷. SpringData 项目所支持 No ...

  7. OpenGL编程指南(第九版) Tiangles 学习笔记

    ////////////////////////////////////////////////////////////////////////////// // // Triangles.cpp / ...

  8. JS十种经典排序算法,纯动画演示,学会了怼死面试官!

    十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序. 线性时间非比较类排序:不通过比较来决定 ...

  9. 深入理解position属性&containing block

    一.包含块(Containing Block) 要讲position,首先就涉及到一个概念:包含块. 1.包含块介绍 包含块简单理解就是一个定位参考块,就是"大盒子里套小盒子"中那 ...

  10. java集合遍历的几种方式总结及比较

    集合类的通用遍历方式, 用迭代器迭代: Iterator it = list.iterator(); while(it.hasNext()) { Object obj = it.next(); }   ...