由于需要海量的进行聚类,所以将 k-means 算法自我封装成一个方便利用的库,可以直接调用得到最优的 k值中心点

#!/usr/bin/python3.4
# -*- coding: utf-8 -*- # k-means算法 import numpy as np
from sklearn.cluster import KMeans
from sklearn import metrics # sklearn官方文档
# http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
def calckmean(array, karr):
# array是一个二维数组
# X = X = [[1, 1], [2, 3], [3, 2], [1, 2], [5, 8], [6, 6], [5, 7], [5, 6], [6, 7], [7, 1], [8, 2], [9, 1], [7, 1], [9, 3]] # k是待选取K值的数组
# karr = [2, 3, 4, 5, 8,...] # 将原始数据由数组变成矩阵 x = np.array(array) # 用来储存轮廓系数的数组
score = []
# 用来储存中心坐标点的数组
point = []
# 用来储存各个簇的坐标
coordinates = []
# 用来储存各个簇点的与中心的距离
distances = [] for k in karr:
# n_clusters为聚类的个数
# max_iter为迭代的次数,这里设置最大迭代次数为300
# n_init=10使用不同质心种子运行k-means算法的次数
kmeans_model = KMeans(n_clusters=k, max_iter=300,n_init=10).fit(x)
# title = 'K = %s, 轮廓系数 = %.03f' % (k, metrics.silhouette_score(X, kmeans_model.labels))
# print(title) # 获取中心点的坐标
counter_point = kmeans_model.cluster_centers_
# print("k=" + str(k) + "时的中心点为" + "\n" + str(counter_point)) # 记录分数
# print(metrics.silhouette_score(x, kmeans_model.labels_,metric='euclidean'))
score.append("%.03f" % (metrics.silhouette_score(x, kmeans_model.labels_)))
# 记录中心坐标
point.append(counter_point) # 将坐标属于哪个簇的标签储存到数组
# k = 3 : [0 0 0 0 2 2 2 2 2 1 1 1 1 1]
# k = 4 : [1 1 1 1 0 0 0 0 0 3 2 2 3 2]
coordinates.append(kmeans_model.labels_) # 每个点和中心点的距离
distances.append(KMeans(n_clusters=k, max_iter=300).fit_transform(x)) # 返回轮廓系数最大的k值\中心坐标\分簇坐标
maxscore = max(score, default=0) for i in range(0, len(score)):
if maxscore == score[i]:
# 储存分簇坐标的数组
coordinate = []
# 储存簇点与中心点的距离数组
distance = []
for j in range(0, len(point[i])):
# 这里是得到分簇坐标
tempcoor = []
for item in zip(coordinates[i], array):
if item[0] == j:
tempcoor.append(item[1])
coordinate.append(tempcoor)
# 得到的样式为k=3,每个簇点的坐标群
# [[[7, 1], [8, 2], [9, 1], [7, 1], [9, 3]],
# [[5, 8], [6, 6], [5, 7], [5, 6], [6, 7]],
# [[1, 1], [2, 3], [3, 2], [1, 2]]] # 这里是得到分簇与中心点的距离
tempdis = []
for item in zip(coordinates[i], distances[i]):
if item[0] == j:
tempdis.append(min(item[1]))
distance.append(tempdis)
# 得到k=3的各个簇点对中心的距离
# [[1.1661903789690597, 0.39999999999999575, 1.166190378969066, 1.1661903789690597, 1.7204650534085277],
# [1.2649110640673495, 0.9999999999999858, 0.4472135954999452, 0.8944271909999063, 0.6324555320336579],
# [1.25, 1.0307764064044151, 1.25, 0.75]] # 得到k=3的中心点
# [[8.0, 1.6],
# [5.4, 6.8],
# [1.75, 2.0]]
return karr[i], point[i], coordinate, distance

调用的时候直接可以:

from kmeans import *

测试数据:

#!/usr/bin/python3.4
# -*- coding: utf-8 -*- from kmeans import * x1 = np.array([1, 2, 3, 1, 5, 6, 5])
x2 = np.array([1, 3, 2, 2, 8, 6, 7]) # a = [[1, 2, 3, 1, 5, 6, 5], [1, 3, 2, 2, 8, 6, 7], [3, 5, 9, 4, 7, 6, 1], [1, 5, 3, 4, 8, 6, 7], [5, 1, 2, 3, 6, 9, 4],[8, 4, 6, 2, 1, 6, 3]]
a = [[1, 1], [2, 3], [3, 2], [1, 2], [5, 8], [6, 6], [5, 7], [5, 6], [6, 7], [7, 1], [8, 2], [9, 1], [7, 1], [9, 3]]
karr = [2, 3, 4, 5, 8]
# print(np.array(a))
# print(list(zip(x1, x2))) K, point, coordinate, distance = calckmean(X, tests)
print("------------------------")
print("k=" + str(K) + "时的中心点为" + "\n" + str(point) + "\n" + "各个簇点为" + "\n" + str(coordinate))
print(distance)

源文件可以在我的github下载:

TTyb

sklearn的kmeans测试的更多相关文章

  1. 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

    1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...

  2. 3. sklearn的K-Means的使用

    1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 在机器学习中有几个重要的python学习 ...

  3. 利用sklearn实现k-means

    基于上面的一篇博客k-means利用sklearn实现k-means #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np ...

  4. 【sklearn入门】通过sklearn实现k-means并可视化聚类结果

    import numpy as np from sklearn.cluster import KMeans from mpl_toolkits.mplot3d import Axes3D import ...

  5. Mahout 0.10.1安装(Hadoop2.6.0)及Kmeans测试

    1.版本和安装路径 Ubuntu 14.04 Mahout_Home=/opt/mahout-0.10.1 Hadoop_Home=/usr/local/hadoop Mavent_Home=/opt ...

  6. 第八次作业:聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

    import numpy as np x = np.random.randint(1,100,[20,1]) y = np.zeros(20) k = 3 def initcenter(x,k): r ...

  7. K-means算法及文本聚类实践

    K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果. 基本思想 k-means算法需要事先指定 ...

  8. 一步步教你轻松学K-means聚类算法

    一步步教你轻松学K-means聚类算法(白宁超  2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...

  9. 1. K-Means原理解析

    1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 我们在一开始的时候应该就说过,机器学习按 ...

随机推荐

  1. supermap中预览osgb格式的倾斜摄影文件

    参考: https://zhidao.baidu.com/question/136723493545478005.html 使用的是SuperMap IDesktop 9D,操作方法如下: 打开超图, ...

  2. HDU - 6054 sa + 树状数组套线段树

    因为强制在线所以只能转成序列上的问题然后树套树了... #include<bits/stdc++.h> #define LL long long #define LD long doubl ...

  3. angular简介

    1.angular简介 一款非常优秀的前端高级 JS 框架 由 Misko Hevery 等人创建 2009 年被 Google 公式收购,用于其多款产品 有一个全职的开发团队继续开发和维护这个库 有 ...

  4. 2018年多校第三场第一题 A. Ascending Rating hdu6319

    比赛地址:http://acm.hdu.edu.cn/contests/contest_show.php?cid=804 题目编号:第一题 A. Ascending Rating  hdu6319 题 ...

  5. 提高在word编辑公式的效率,及快捷键、对齐、编号问题

    1.     Word中编辑公式简介(重点看) https://jacobz.top/2017-08/WordMath/ 2.     快捷键 https://wenku.baidu.com/view ...

  6. Navicat Premium 12.1.11.0安装与激活

    本文介绍Navicat Premium 12.1.11.0的安装.激活与基本使用. 博主所提供的激活文件理论支持Navicat Premium 12.0.x系列和Navicat Premium 12. ...

  7. centos6.5使用Google auth进行双因子认证

    1.环境 系统:centos6.5 x86_64 [root@uu ~]# uname -a Linux uu 2.6.32-642.el6.x86_64 #1 SMP Wed Apr 13 00:5 ...

  8. [Git]2018-10 解决git cmd中文乱码问题

    2018年10月12日 莫名其妙出现cmd下git log中文乱码问题,显示一堆<E4><A8>之类的乱码.git bash却一切正常. 怀疑是Windows系统升级出现的不兼 ...

  9. 【工作手札】Nginx接口代理可跨域

    接口代理nginx配置 location /api/ { proxy_set_header Host api.shenjian.io; proxy_set_header X-Forwarded-For ...

  10. Redis安装、命令以及设置密码遇到的问题

    一.下载Redis 如果没有 安装wget先安装wget和gcc(使用make的时候会用上) wget http://download.redis.io/releases/redis-4.0.8.ta ...