由于需要海量的进行聚类,所以将 k-means 算法自我封装成一个方便利用的库,可以直接调用得到最优的 k值中心点

#!/usr/bin/python3.4
# -*- coding: utf-8 -*- # k-means算法 import numpy as np
from sklearn.cluster import KMeans
from sklearn import metrics # sklearn官方文档
# http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
def calckmean(array, karr):
# array是一个二维数组
# X = X = [[1, 1], [2, 3], [3, 2], [1, 2], [5, 8], [6, 6], [5, 7], [5, 6], [6, 7], [7, 1], [8, 2], [9, 1], [7, 1], [9, 3]] # k是待选取K值的数组
# karr = [2, 3, 4, 5, 8,...] # 将原始数据由数组变成矩阵 x = np.array(array) # 用来储存轮廓系数的数组
score = []
# 用来储存中心坐标点的数组
point = []
# 用来储存各个簇的坐标
coordinates = []
# 用来储存各个簇点的与中心的距离
distances = [] for k in karr:
# n_clusters为聚类的个数
# max_iter为迭代的次数,这里设置最大迭代次数为300
# n_init=10使用不同质心种子运行k-means算法的次数
kmeans_model = KMeans(n_clusters=k, max_iter=300,n_init=10).fit(x)
# title = 'K = %s, 轮廓系数 = %.03f' % (k, metrics.silhouette_score(X, kmeans_model.labels))
# print(title) # 获取中心点的坐标
counter_point = kmeans_model.cluster_centers_
# print("k=" + str(k) + "时的中心点为" + "\n" + str(counter_point)) # 记录分数
# print(metrics.silhouette_score(x, kmeans_model.labels_,metric='euclidean'))
score.append("%.03f" % (metrics.silhouette_score(x, kmeans_model.labels_)))
# 记录中心坐标
point.append(counter_point) # 将坐标属于哪个簇的标签储存到数组
# k = 3 : [0 0 0 0 2 2 2 2 2 1 1 1 1 1]
# k = 4 : [1 1 1 1 0 0 0 0 0 3 2 2 3 2]
coordinates.append(kmeans_model.labels_) # 每个点和中心点的距离
distances.append(KMeans(n_clusters=k, max_iter=300).fit_transform(x)) # 返回轮廓系数最大的k值\中心坐标\分簇坐标
maxscore = max(score, default=0) for i in range(0, len(score)):
if maxscore == score[i]:
# 储存分簇坐标的数组
coordinate = []
# 储存簇点与中心点的距离数组
distance = []
for j in range(0, len(point[i])):
# 这里是得到分簇坐标
tempcoor = []
for item in zip(coordinates[i], array):
if item[0] == j:
tempcoor.append(item[1])
coordinate.append(tempcoor)
# 得到的样式为k=3,每个簇点的坐标群
# [[[7, 1], [8, 2], [9, 1], [7, 1], [9, 3]],
# [[5, 8], [6, 6], [5, 7], [5, 6], [6, 7]],
# [[1, 1], [2, 3], [3, 2], [1, 2]]] # 这里是得到分簇与中心点的距离
tempdis = []
for item in zip(coordinates[i], distances[i]):
if item[0] == j:
tempdis.append(min(item[1]))
distance.append(tempdis)
# 得到k=3的各个簇点对中心的距离
# [[1.1661903789690597, 0.39999999999999575, 1.166190378969066, 1.1661903789690597, 1.7204650534085277],
# [1.2649110640673495, 0.9999999999999858, 0.4472135954999452, 0.8944271909999063, 0.6324555320336579],
# [1.25, 1.0307764064044151, 1.25, 0.75]] # 得到k=3的中心点
# [[8.0, 1.6],
# [5.4, 6.8],
# [1.75, 2.0]]
return karr[i], point[i], coordinate, distance

调用的时候直接可以:

from kmeans import *

测试数据:

#!/usr/bin/python3.4
# -*- coding: utf-8 -*- from kmeans import * x1 = np.array([1, 2, 3, 1, 5, 6, 5])
x2 = np.array([1, 3, 2, 2, 8, 6, 7]) # a = [[1, 2, 3, 1, 5, 6, 5], [1, 3, 2, 2, 8, 6, 7], [3, 5, 9, 4, 7, 6, 1], [1, 5, 3, 4, 8, 6, 7], [5, 1, 2, 3, 6, 9, 4],[8, 4, 6, 2, 1, 6, 3]]
a = [[1, 1], [2, 3], [3, 2], [1, 2], [5, 8], [6, 6], [5, 7], [5, 6], [6, 7], [7, 1], [8, 2], [9, 1], [7, 1], [9, 3]]
karr = [2, 3, 4, 5, 8]
# print(np.array(a))
# print(list(zip(x1, x2))) K, point, coordinate, distance = calckmean(X, tests)
print("------------------------")
print("k=" + str(K) + "时的中心点为" + "\n" + str(point) + "\n" + "各个簇点为" + "\n" + str(coordinate))
print(distance)

源文件可以在我的github下载:

TTyb

sklearn的kmeans测试的更多相关文章

  1. 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

    1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...

  2. 3. sklearn的K-Means的使用

    1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 在机器学习中有几个重要的python学习 ...

  3. 利用sklearn实现k-means

    基于上面的一篇博客k-means利用sklearn实现k-means #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np ...

  4. 【sklearn入门】通过sklearn实现k-means并可视化聚类结果

    import numpy as np from sklearn.cluster import KMeans from mpl_toolkits.mplot3d import Axes3D import ...

  5. Mahout 0.10.1安装(Hadoop2.6.0)及Kmeans测试

    1.版本和安装路径 Ubuntu 14.04 Mahout_Home=/opt/mahout-0.10.1 Hadoop_Home=/usr/local/hadoop Mavent_Home=/opt ...

  6. 第八次作业:聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

    import numpy as np x = np.random.randint(1,100,[20,1]) y = np.zeros(20) k = 3 def initcenter(x,k): r ...

  7. K-means算法及文本聚类实践

    K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果. 基本思想 k-means算法需要事先指定 ...

  8. 一步步教你轻松学K-means聚类算法

    一步步教你轻松学K-means聚类算法(白宁超  2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...

  9. 1. K-Means原理解析

    1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 我们在一开始的时候应该就说过,机器学习按 ...

随机推荐

  1. Spring boot 学习笔记 1 - 自定义错误

    Spring Boot提供了WebExceptionHandler一个以合理的方式处理所有错误的方法.它在处理顺序中的位置就在WebFlux提供的处理程序之前,这被认为是最后一个处理程序. 对于机器客 ...

  2. nginx配置负载均衡

    本教程不讲解nginx的安装,若安装请看博客 http://www.cnblogs.com/hqjy/p/8092983.html 本教程不讲解tomcat的安装,若安装请看博客 http://www ...

  3. linux上部署JMeter

    export JAVA_HOME=/opt/jdk1.8.0_171 export PATH=$PATH:$JAVA_HOME/bin 让环境变量生效 vi /etc/profile 添加下述两行: ...

  4. html基础学习1

    <html> <head> <title>标题</title> </head> <body bgcolor="pink&qu ...

  5. java去除查询实体字段多值之间空格

    String str = 需要去除的字段; str.replaceAll(",","");

  6. 【spring】-- springboot配置全局异常处理器

    一.为什么要使用全局异常处理器? 什么是全局异常处理器? 就是把错误异常统一处理的方法. 应用场景: 1.当你使用jsr303参数校验器,如果参数校验不通过会抛异常,而且无法使用try-catch语句 ...

  7. 代码调用t.cn接口生成短址

    新浪短网址接口的稳定性和跳转速度还是很给力的,现给出其API说明. 该接口支持两种返回格式:xml和json 对应的URL请求地址为: xml:http://api.t.sina.com.cn/sho ...

  8. websocket与ajax的区别浅析

    1.本质不同  Ajax,即异步JavaScript和XML,是一种创建交互式网页应用的网页开发技术:  WebSocket是HTML5一种新的协议,实现了浏览器与服务器全双工通信.其本质是先通过HT ...

  9. TypeScript 函数-重载

    function attr(name:string):string; function attr(age:number):string; function attr(nameorage:any):an ...

  10. 解决fastJson无序问题

    对外提供接口,第三方传过来的参数没问题.可是用fastJson 转换的出现 参数顺序不一致,导致 验签失败 解决fastJosn 转换无序问题 https://github.com/alibaba/f ...