P1829 [国家集训队]Crash的数字表格
P1829 [国家集训队]Crash的数字表格
前置芝士
莫比乌斯反演
乘法逆元
数论分块
正文
//补充:以下式子中的除法均为整除
由题目可以得知,这道题让我们所求的数,用一个式子来表达即为:\(\boxed{ANS=\sum_{i=1}^n \sum_{j=1}^m LCM(i,j)}\)
而根据莫比乌斯反演的内容,我们可以对右边的式子进行进一步的推导:
\sum_{i=1}^n \sum_{j=1}^m LCM(i,j)&=\sum_{i=1}^n \sum_{j=1}^m {ij\over gcd(i,j)}\\
&=\sum_{t=1}^n t \sum_{i=1}^n \sum_{j=1}^m {ij \over {t^2}} [GCD({i\over t},{j \over t})=1]\\
&=\sum_{t=1}^n t \sum_{i=1}^{n\over t} \sum_{j=1}^{m \over t} ij[GCD(i,j)=1]\\
&=\sum_{t=1}^n t f({n\over t},{m\over t})
\end{align}
\]
接下来,令 \(\boxed{K=td}\) ,则有以下推论:
\sum_{t=1}^n t \sum_{d=1}^{n\over t} d^2 \mu(d) *{((1+{n\over td}){n\over td})\over 2}*{((1+{m\over td}){m\over td})\over 2}&=\sum_{K=1}^n *{((1+{n\over td}){n\over td})\over 2}*{((1+{m\over td}){m\over td})\over 2} \sum_{d|K} d^2 \mu(d) {K\over d}\\
\end{align}
\]
然后,我们有定义一个函数:\(\boxed{g(K)=\sum_{d|K} K d \mu (d)}\),则有:
g(K)&=\sum_{d|K} K d \mu (d)\\
&=K \sum_{d|K} \mu(d) d\\
&=K f(K)\\
\end{align}
\]
这里我们定义了一个函数:\(f\),其性质为:
\]
我们可以立马发现函数 \(f\) 是一个积性函数,若我们设 \(p\) 为一个质数,则会有以下推论:
f(p^K)=1-p\\
而当K\ge 2 时,有:f(p^K)=f(p^{K-1})
\]
最终,我们便可以通过预处理函数 \(f\) ,从而更快地得到答案。但我们该如何预处理函数 \(f\) 呢?很简单,我们只需要用线性筛处理即可。
请仔细回想一下欧拉函数线性筛和莫比乌斯函数线性筛是如何由普通的线性筛转化而来的,若读者已经完全理解了这两种线性筛的拓展应用,那么对于函数 \(f\) 的线性筛求法,想必读者也能轻易写出。这里将不会对函数 \(f\) 的预处理做过多的介绍。
代码如下:
typedef long long ll;
const int N=10000005;
int tot,phi[N],f[N],prime[N];
ll pre[N];
bool np[N];
void init(int n){
np[1]=true;
f[1]=1;
for (int i=2;i<=n;i++){
if (!np[i]){
prime[tot++]=i;
f[i]=1-i;
}
for (int j=0,k;(k=i*prime[j])<=n;j++){
np[k]=true;
if (i%prime[j]==0) {
f[k]=f[i];
break;
}
f[k]=f[i]*f[prime[j]];
}
}
}
现在我们已经完成了 (且时间复杂度为\(O (n)\) )对函数 \(f\) 的预处理,接下来便是计算答案了。不过,先别着急,我们再来看一看推导后的式子:
\]
是不是发现了一个惊喜?相信读者在学习完数论分块的内容后会很容易地发现:这个式子是可以通过数论分块进行进一步优化的。接下来,我们将对这一步的优化进行解释:
既然我们定义了函数 \(g\) ,我们先把 \(g\) 带进上面的式子。
\]
接着,因为我们已经预处理完了函数 \(f\) ,那么便可以用 \(f\) 来表示 \(g\) 。
\]
现在已经很明显了:我们可以对这个\(g(K)\)进行数论分块的优化。我们只需算出前缀和,就可以为所欲为愉快地数论分块了。
这里定义前缀和为数组 \(pre\) ,则转移方程为:\(\boxed{pre[i]=pre[i-1]+f[i]*i}\)
最后,在结合乘法逆元的知识(因为题目给定了模数:\(20101009\) ,且式中带有除法),便可以在不超时的情况下计算出答案。
最终的代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=10000005;
const ll mod=20101009;
int tot,f[N],prime[N];//质数个数+1,第i个f函数的值,第i个质数
ll pre[N];//前缀和
bool np[N];//非质数
void init(int n){
np[1]=true;
f[1]=1;
for (int i=2;i<=n;i++){
if (!np[i]){
prime[tot++]=i;
f[i]=1-i;
}
for (int j=0,k;(k=i*prime[j])<=n;j++){
np[k]=true;
if (i%prime[j]==0) {
f[k]=f[i];
break;
}
f[k]=f[i]*f[prime[j]];
}
}
for (int i=1;i<=n;i++) pre[i]=pre[i-1]+(ll)f[i]*i;//处理前缀和
}//预处理
int main(){
int n,m;
ll ans=0;//最终答案
scanf("%d %d",&n,&m);
if (n>m) swap(n,m);//保证n比m小
init(n);
int j;
for (int i=1;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));//开始愉悦地数论分块~~
ll a1=(ll)(1+n/i)*(n/i)/2%mod,a2=(ll)(1+m/i)*(m/i)/2%mod;//一定记得加(long long)
ans+=(a1%mod*a2%mod*(pre[j]-pre[i-1])%mod+mod)%mod;
ans%=mod;
//乘法逆元的运用
}
printf("%lld\n",ans%mod);
return 0;
}
最后的题外话:作者一定会想方设法地把莫比乌斯函数的博客更新完的(哭,太难了)。
感谢阅读。
(作者的OI历程:)
P1829 [国家集训队]Crash的数字表格的更多相关文章
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- 洛谷P1829 [国家集训队]Crash的数字表格
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$. 开始开心(自闭)化简: $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$ =$\su ...
- 题解-[国家集训队]Crash的数字表格 / JZPTAB
题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...
随机推荐
- 飞鱼CRM
直接放干货吧,今日头条飞鱼CRM的PHP调用方法,点我跳转. 很简单的两个方法,加密时重要的是有一个空格,必须要有,这个也是坑了我很长时间的一个坑. 接下来具体说一下飞鱼CRM系统接口加密的方法. & ...
- 数组基础篇(对应C++ Primer plus 4.10)
概要:数组是由一组同类型的元素组成的集合,在内存上是一片连续的存储空间.C++提供了三种数组的表示方法:普通数组,模板类vector(C++98 新增的标准模板库STL提供该模板类)和模板类array ...
- NC14326 Rails
NC14326 Rails 题目 题目描述 There is a famous railway station in PopPush City. Country there is incredibly ...
- 跟HR在大群吵架是什么体验?
原创不易,求分享.求一键三连 昨天跟HR负责人在公司大群吵了一架,先说结论:我输了... 事情原委是,老板在周一司庆上聊嗨了,说了一句:我觉得打卡没用,建议取消打卡. 下来后老板在公司论坛发了一个问题 ...
- day03_2_流程控制
# 流程控制 学习目标: ~~~txt1. idea安装与使用2. 流程控制if...else结构3. 流程控制switch结构4. 流程控制循环结构5. 流程控制关键字~~~ # 一.流程控制概述 ...
- word count的reduce过程以及项目打包部署
map过程已经写完了,上面那个流程我们涉及到了泛型以及序列化,我们要知道每个参数代表的含义,这样有助于我们理解整个流程. 下面我们开始reduce,这个过程我们要把map输出的键值对把key值相同的放 ...
- 使用Hexo建立一个轻量、简易、高逼格的博客
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_93 在之前的一篇文章中,介绍了如何使用Hugo在三分钟之内建立一个简单的个人博客系统,它是基于go lang的,其实,市面上还有一 ...
- 机器学习建模高级用法!构建企业级AI建模流水线 ⛵
作者:韩信子@ShowMeAI 机器学习实战系列: http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/articl ...
- 在生鲜零售业,DolphinScheduler 还能这么玩!
点击上方 蓝字关注我们 ✎ 编 者 按 2021 年,Apache DolphinScheduler 社区又迎来了新的蓬勃发展,社区活跃度持续提高.目前,项目 GitHub Star 已达 6.7k, ...
- 【MySQL】从入门到精通9-数据库的备份(完结)
上期:[MySQL]从入门到精通8-SQL数据库编程 第一章:数据的导出 回到我们的Workbench. 选择Data Export. 选择需要导出的数据库. 注意,如果选择"Export ...