P1829 [国家集训队]Crash的数字表格
P1829 [国家集训队]Crash的数字表格
前置芝士
莫比乌斯反演
乘法逆元
数论分块
正文
//补充:以下式子中的除法均为整除
由题目可以得知,这道题让我们所求的数,用一个式子来表达即为:\(\boxed{ANS=\sum_{i=1}^n \sum_{j=1}^m LCM(i,j)}\)
而根据莫比乌斯反演的内容,我们可以对右边的式子进行进一步的推导:
\sum_{i=1}^n \sum_{j=1}^m LCM(i,j)&=\sum_{i=1}^n \sum_{j=1}^m {ij\over gcd(i,j)}\\
&=\sum_{t=1}^n t \sum_{i=1}^n \sum_{j=1}^m {ij \over {t^2}} [GCD({i\over t},{j \over t})=1]\\
&=\sum_{t=1}^n t \sum_{i=1}^{n\over t} \sum_{j=1}^{m \over t} ij[GCD(i,j)=1]\\
&=\sum_{t=1}^n t f({n\over t},{m\over t})
\end{align}
\]
接下来,令 \(\boxed{K=td}\) ,则有以下推论:
\sum_{t=1}^n t \sum_{d=1}^{n\over t} d^2 \mu(d) *{((1+{n\over td}){n\over td})\over 2}*{((1+{m\over td}){m\over td})\over 2}&=\sum_{K=1}^n *{((1+{n\over td}){n\over td})\over 2}*{((1+{m\over td}){m\over td})\over 2} \sum_{d|K} d^2 \mu(d) {K\over d}\\
\end{align}
\]
然后,我们有定义一个函数:\(\boxed{g(K)=\sum_{d|K} K d \mu (d)}\),则有:
g(K)&=\sum_{d|K} K d \mu (d)\\
&=K \sum_{d|K} \mu(d) d\\
&=K f(K)\\
\end{align}
\]
这里我们定义了一个函数:\(f\),其性质为:
\]
我们可以立马发现函数 \(f\) 是一个积性函数,若我们设 \(p\) 为一个质数,则会有以下推论:
f(p^K)=1-p\\
而当K\ge 2 时,有:f(p^K)=f(p^{K-1})
\]
最终,我们便可以通过预处理函数 \(f\) ,从而更快地得到答案。但我们该如何预处理函数 \(f\) 呢?很简单,我们只需要用线性筛处理即可。
请仔细回想一下欧拉函数线性筛和莫比乌斯函数线性筛是如何由普通的线性筛转化而来的,若读者已经完全理解了这两种线性筛的拓展应用,那么对于函数 \(f\) 的线性筛求法,想必读者也能轻易写出。这里将不会对函数 \(f\) 的预处理做过多的介绍。
代码如下:
typedef long long ll;
const int N=10000005;
int tot,phi[N],f[N],prime[N];
ll pre[N];
bool np[N];
void init(int n){
np[1]=true;
f[1]=1;
for (int i=2;i<=n;i++){
if (!np[i]){
prime[tot++]=i;
f[i]=1-i;
}
for (int j=0,k;(k=i*prime[j])<=n;j++){
np[k]=true;
if (i%prime[j]==0) {
f[k]=f[i];
break;
}
f[k]=f[i]*f[prime[j]];
}
}
}
现在我们已经完成了 (且时间复杂度为\(O (n)\) )对函数 \(f\) 的预处理,接下来便是计算答案了。不过,先别着急,我们再来看一看推导后的式子:
\]
是不是发现了一个惊喜?相信读者在学习完数论分块的内容后会很容易地发现:这个式子是可以通过数论分块进行进一步优化的。接下来,我们将对这一步的优化进行解释:
既然我们定义了函数 \(g\) ,我们先把 \(g\) 带进上面的式子。
\]
接着,因为我们已经预处理完了函数 \(f\) ,那么便可以用 \(f\) 来表示 \(g\) 。
\]
现在已经很明显了:我们可以对这个\(g(K)\)进行数论分块的优化。我们只需算出前缀和,就可以为所欲为愉快地数论分块了。
这里定义前缀和为数组 \(pre\) ,则转移方程为:\(\boxed{pre[i]=pre[i-1]+f[i]*i}\)
最后,在结合乘法逆元的知识(因为题目给定了模数:\(20101009\) ,且式中带有除法),便可以在不超时的情况下计算出答案。
最终的代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=10000005;
const ll mod=20101009;
int tot,f[N],prime[N];//质数个数+1,第i个f函数的值,第i个质数
ll pre[N];//前缀和
bool np[N];//非质数
void init(int n){
np[1]=true;
f[1]=1;
for (int i=2;i<=n;i++){
if (!np[i]){
prime[tot++]=i;
f[i]=1-i;
}
for (int j=0,k;(k=i*prime[j])<=n;j++){
np[k]=true;
if (i%prime[j]==0) {
f[k]=f[i];
break;
}
f[k]=f[i]*f[prime[j]];
}
}
for (int i=1;i<=n;i++) pre[i]=pre[i-1]+(ll)f[i]*i;//处理前缀和
}//预处理
int main(){
int n,m;
ll ans=0;//最终答案
scanf("%d %d",&n,&m);
if (n>m) swap(n,m);//保证n比m小
init(n);
int j;
for (int i=1;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));//开始愉悦地数论分块~~
ll a1=(ll)(1+n/i)*(n/i)/2%mod,a2=(ll)(1+m/i)*(m/i)/2%mod;//一定记得加(long long)
ans+=(a1%mod*a2%mod*(pre[j]-pre[i-1])%mod+mod)%mod;
ans%=mod;
//乘法逆元的运用
}
printf("%lld\n",ans%mod);
return 0;
}
最后的题外话:作者一定会想方设法地把莫比乌斯函数的博客更新完的(哭,太难了)。
感谢阅读。
(作者的OI历程:)

P1829 [国家集训队]Crash的数字表格的更多相关文章
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- 洛谷P1829 [国家集训队]Crash的数字表格
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$. 开始开心(自闭)化简: $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$ =$\su ...
- 题解-[国家集训队]Crash的数字表格 / JZPTAB
题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...
随机推荐
- Nginx+Keepalived+VIP漂移实现HA高可用技术之详细教程
https://www.cnblogs.com/zcc666/p/13141626.html 这个是nginx安装教程地址 https://www.cnblogs.com/zcc666/p/1313 ...
- Educational Codeforces Round 128 (Rated for Div. 2) A-C+E
Educational Codeforces Round 128 (Rated for Div. 2) A-C+E A 题目 https://codeforces.com/contest/1680/p ...
- docker的平替--podman
前言 我们都知道,docker这个东西,是CaaS(Container as a Service,容器即服务)的通常解法.我们使用docker来管理容器的生命周期,比如镜像的生成.容器的管理和定制(D ...
- Docker — 从入门到实践PDF下载(可复制版)
0.9-rc2(2017-12-09)修订说明:本书内容将基于DockerCEv17.MM进行重新修订,计划2017年底发布0.9.0版本.旧版本(Docker1.13-)内容,请阅读docker-l ...
- CSS 盒子模型(一)
CSS 盒子模型(一) 本人在校学生,主学后端,后来发现前端的基础都忘得差不多了才想着写文章回来复习!欢迎留言交流. 什么是盒子呢? 拿下举例,我们可以把每个红框都比作一个盒子,他们可以是任意的 HT ...
- labview从入门到出家7(进阶篇)--队列的使用
本节简单讲解队列在Labview中的使用,队列你可以认为就是一组先进先出的数据列表,在Labview中常用来缓存和传递数据.用了这么久的队列,个人认为有个方便的地方在于数据传递的把控,不管是局部变量还 ...
- Effective C++阅读笔记 较详细 复杂条款带样例
一.让自己习惯C++ 条款01:视C++为一个语言联邦 C++可视为: C:以C为基础. 面向对象的C++:添加面向对象特性. 模板C++:泛型编程概念,使用模板. STL:使用STL的容器.迭代器. ...
- 时间模块之datatime模块、os模块、sys模块、json模块、json模块实操
目录 一.模块的绝对导入和相对导入 二.包的概念 三.编程思想的转变 四.软件开发目录规范 五.常见的内置模块 一.时间模块之datatime模块 1.datetime.datetime.today( ...
- 我为 Netty 贡献源码 | 且看 Netty 如何应对 TCP 连接的正常关闭,异常关闭,半关闭场景
欢迎关注公众号:bin的技术小屋,本文图片加载不出来的话可查看公众号原文 本系列Netty源码解析文章基于 4.1.56.Final版本 写在前面..... 本文是笔者肉眼盯 Bug 系列的第三弹,前 ...
- 06 app分享功能
通过某一个点击事件触发confirm弹窗 确定后正式进行分享功能处理 这是一个封装好的分享功能插件 https://ext.dcloud.net.cn/plugin?id=4860 如果自己写的话会很 ...