最小树1

Description

某省长调查交通情况,发现本省交通事故发生不断,于是决定在本省内全部修建地铁。
该省长得到的统计表中列出了任意两市之间的距离,为了确保任何两个市都可以直接
或者间接实现地铁交通,并要求铺设的地铁总长度最小,请计算最小的地铁总长度。

Input

测试输入包含若干测试用例。每个测试用例的第一行给出市的数目n,(n < 50);随后的
n(n-1)/2行对应市之间的距离,每行给出一对正整数,分别是两个市的编号,以及两
市之间的距离。为简单起见,市从1到n编号,当n为0时,输入结束,该样例不做处理。

Output

对每个测试用例,在一行里输出最小的地铁总长度,保留两位小数。

Sample Input

3
1 2 1.8
1 3 2.9
2 3 4.5
0

Sample Output

4.70

Code

#include<bits/stdc++.h>

using namespace std;
const int INF = 99999999; double mp[60][60],dis[60];
int vis[60]; double find(int n)
{
double mi,sum=0;
memset(vis, 0 ,sizeof(vis));
for(int i=1;i<=n;i++)
{
dis[i]=mp[1][i];
}
vis[1]=1;
for(int i=1;i<n;i++)
{
mi=INF;
int pos;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&dis[j]<mi)
{
mi=dis[j];
pos=j;
}
}
vis[pos]=1;
sum+=mi;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&dis[j]>mp[pos][j])
dis[j]=mp[pos][j];
}
}
return sum;
} int main()
{
int n,a,b;
double l;
while(cin>>n&&n)
{
for(int i=0;i<n*(n-1)/2;i++)
{
cin>>a>>b>>l;
mp[a][b]=mp[b][a]=l;
}
double ans=find(n);
printf("%.2lf\n", ans);
}
return 0;
}

最小树2

Description

在森林里住了n只小熊,他们分别叫小熊A,小熊B……,小熊们决定修建水泥路让他们能更加方便的往来,使得任何一只小熊都能轻松到达其他小熊的家,同时小熊们希望修建的水泥路最短。

Input

测试输入若干实例,每个测试实例第一行给出小熊的数目n和小熊们能直接通往的m条道路,(n≤26,m &lt; 100)接下来m行,每行为两只小熊的名字(分别为A,B,C.........,若n为3,则只会出现A,B,C,依次类推)以及这两只小熊之间的距离(为正整数)。

Output

输出最短的水泥路的长度,若不能满足任何一只小熊到其他所有小熊的家,则输出-1.

Sample Input

3 3
A B 1
A C 2
B C 4
3 1
A B 2

Sample Output

3
-1

Code

#include<bits/stdc++.h>

#define INF 0x3f3f3f3f

using namespace std;

int mp[30][30],dis[30];
int vis[30],n; void init()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j) mp[i][j]=0;
else
mp[i][j]=INF;
}
}
}; int find(int n)
{
memset(vis, 0, sizeof(vis));
int mi,pos,sum=0;
for(int i=1;i<=n;i++) dis[i]=mp[1][i];
vis[1]=1;
for(int i=1;i<n;i++)
{
mi=INF;
int flag=0;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&dis[j]<mi)
{
mi=dis[j];
pos=j;
flag=1;
}
}
if(!flag) return -1;
sum+=mi;
vis[pos]=1;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&dis[j]>mp[pos][j])
{
dis[j]=mp[pos][j];
}
}
}
return sum;
} int main()
{
int m,l;
string a,b;
while(cin>>n>>m)
{
init();
for(int i=0;i<m;i++)
{
cin>>a>>b>>l;
int x=a[0]-'A'+1;
int y=b[0]-'A'+1;
mp[x][y]=mp[y][x]=l;
}
int ans=find(n);
cout<<ans<<endl;
}
return 0;
}

最小树3

Description

有n个站,求从1站到n站的最短路线。

Input

输入第一行n和m,  n表示有n个站,m表示有m条道路,(n,m&lt;100)接下来m行每一行输入三个数a,b,d,表示a和b之间有一条长为d 的路。

Output

输出从1到n的最短距离。

Sample Input

5 4
1 2 1
1 5 5
2 4 2
4 5 1
2 1
1 2 3

Sample Output

4
3

Code

#include<iostream>
#include<cstdio> using namespace std; int e[101][101];
int n,m; void initial()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i==j)
e[i][j]=0;
else
e[i][j]=99999999;
}
void find()
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
}
int main()
{
while(cin>>n>>m)
{
initial();
for(int i=1;i<=m;i++)
{
int a,b,c;
cin>>a>>b>>c;
e[a][b]=e[b][a]=c;
}
find();
cout<<e[1][n]<<endl;
}
}

ACM-NEFUOJ-最小树-Prim算法的更多相关文章

  1. 生成最小树prim算法

    最小生成树prim算法实现   ‘      ’最小生成树,就是权值(两点间直线的值)之和的最小值. 首先,要用二维数组记录点和权值.如上图所示无向图: int G[6][6];       G[1] ...

  2. 【ACM程序设计】最小生成树 Prim算法

    最小生成树 ● 最小生成树的定义是给定一个无向图,如果它任意两个顶点都联通并且是一棵树,那么我们就称之为生成树(Spanning Tree).如果是带权值的无向图,那么权值之和最小的生成树,我们就称之 ...

  3. Prim算法(三)之 Java详解

    前面分别通过C和C++实现了普里姆,本文介绍普里姆的Java实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http:// ...

  4. Prim算法(二)之 C++详解

    本章是普里姆算法的C++实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http://www.cnblogs.com/sk ...

  5. Prim算法(一)之 C语言详解

    本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里 ...

  6. 最小生成树问题---Prim算法与Kruskal算法实现(MATLAB语言实现)

    2015-12-17晚,复习,甚是无聊,阅<复杂网络算法与应用>一书,得知最小生成树问题(Minimum spanning tree)问题.记之. 何为树:连通且不含圈的图称为树. 图T= ...

  7. prim算法java版

    public class Prim { static int MAX = 65535; public static void prim(int[][] graph, int n){ char[] c ...

  8. 好玩的Prim算法

    这段时间学算法,用JS实现了一个Prim,用于在连通图中找出最小树,具体内容.代码解析周末会不上,现在先把源码献上: <!DOCTYPE html> <html charset='G ...

  9. 算法之prim算法

    最小生成树是数据结构中图的一种重要应用,它的要求是从一个带权无向完全图中选择n-1条边并使这个图仍然连通(也即得到了一棵生成树),同时还要考虑使树的权最小. prim算法就是一种最小生成树算法. 普里 ...

  10. Kruskal和Prim算法求最小生成树

    Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...

随机推荐

  1. 微软开源 Python 自动化神器 Playwright

    背景 逛博客时候突然看到 Playwright web自动化,感觉很有意思,就翻看了很多博客,简单记录一下. 简介 Playwright是一个强大的Python库,仅用一个API即可自动执行Chrom ...

  2. stream 在 groupingby 之后,对结果数据再进行封装后返回

    使用 Collectors.mapping 来指定 分组结果要取哪些数据

  3. Debug --> python中的True False 0 1

    今天看了下python中的一些基础知识,以offer64为例叭! 求 1+2+...+n ,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B ...

  4. fiddler 实现跨域

    static function OnBeforeResponse(oSession: Session) { ... if(oSession.uriContains("要处理的url" ...

  5. 如何运用Vue自定义组件以及组件的传值

    Vue自定义组件 引入组件 首先在项目内的components新建.vue文件. 创建完成之后搭建完整的框架.其实就是新建组件,在此之前,需要在VScode中引入一个插件(vue 2 snippets ...

  6. 用python提取txt文件中的特定信息并写入Excel

    这个是用 excel里面的 去掉空格最后导出的一个list: 原本是有空格的 后面是抵消了中间的空格. 然后 这里侧重说一下什么是split()函数 语法:str.split(str="&q ...

  7. uniapp调起微信支付查询订单状态逻辑处理

    首先看页面效果: <template> <view class="page"> <view class="page-bd"> ...

  8. 十大经典排序之希尔排序(C++实现)

    希尔排序 思路: 1.选择一个增量序列 t1,t2,--,tk,其中 ti > tj, tk = 1(最后必须是1) 2.按增量序列个数 k,对序列进行 k 趟排序 代码实现: #include ...

  9. linux学习之vi

    vi 删除当前行dd 删除当前行及下面内容 dG 删除第2行到第3行2d 3d 删除指定行,删除第5行  5dd 删除当前行以下3行  d3

  10. 关于TIdTCPClient的几种方法

    关于TIdTCPClient的几种方法 收藏  其实Indy比较简单,但是可以提供的方法太多了.我找了很久,才搞明白. 比方说这个读取缓冲区的数据,就有很多种方法.相对于TTcpClient的几种方法 ...