Sentiment analysis in nlp

The goal of the program is to analysis the article title is Sarcasm or not, i use tensorflow 2.5 to solve this problem.

Dataset download url: https://www.kaggle.com/rmisra/news-headlines-dataset-for-sarcasm-detection/home

a sample of the dataset:

{
"article_link": "https://www.huffingtonpost.com/entry/versace-black-code_us_5861fbefe4b0de3a08f600d5",
"headline": "former versace store clerk sues over secret 'black code' for minority shoppers",
"is_sarcastic": 0
}

we want to depend on headline to predict the is_sarcastic, 1 means True,0 means False.

preprocessing

  1. use pandas to read json file.

    import pandas as pd
    # lines = True means headle the json for each line
    df = pd.read_json("Sarcasm_Headlines_Dataset_v2.json" ,lines="True")
    df
    '''
    is_sarcastic headline article_link
    0 1 thirtysomething sci... https://www.theonion.co...
    1 0 dem rep. totally ... https://www.huffingtonpos..
    '''
  2. build list for each column

    labels = []
    sentences = []
    urls = []
    # a tips for convert series to list
    '''
    type(df['is_sarcastic'])
    # Series
    type(df['is_sarcastic'].values)
    # ndarray
    type(df['is_sarcastic'].values.tolist())
    # list
    '''
    labels = df['is_sarcastic'].values.tolist()
    sentences = df['headline'].values.tolist()
    urls = df['article_link'].values.tolist()
    len(labels) # 28619
    len(sentences) # 28619
  3. split dataset into train set and test set

    # train size is the 2/3 of the all dataset.
    train_size = int(len(labels) / 3 * 2)
    train_sentences = sentences[0: train_size]
    test_sentences = sentences[train_size:]
    train_y = labels[0:train_size]
    test_y = labels[train_size:]
  4. init some parameter

    # some parameter
    vocab_size = 10000
    # input layer to embedding
    embedding_dim = 16
    # each input sentence length
    max_length = 100
    # padding method
    trunc_type='post'
    padding_type='post'
    # token the unfamiliar word
    oov_tok = "<OOV>"
  5. preprocessing on train set and test set

    # processing on train set and test set
    import numpy as np
    from tensorflow.keras.preprocessing.text import Tokenizer
    from tensorflow.keras.preprocessing.sequence import pad_sequences
    tokenizer = Tokenizer(oov_token = oov_tok)
    tokenizer.fit_on_texts(train_sentences)
    train_X = tokenizer.texts_to_sequences(train_sentences)
    # padding the data
    train_X = pad_sequences(train_X,
    maxlen = max_length,
    truncating = trunc_type,
    padding = padding_type)
    train_X[:2]
    # convery the list to nparray
    train_y = np.array(train_y)
    # same operator to test set
    test_X = tokenizer.texts_to_sequences(test_sentences)
    test_X = pad_sequences(test_X ,
    maxlen = max_length,
    truncating = trunc_type,
    padding = padding_type)
    test_y = np.array(test_y)

build the model

some important functions and args:

  • tf.keras.layers.Dense # Denseimplements the operation:output = activation(dot(input, kernel) + bias) , a NN layer

    • activation # Activation function to use. If you don't specify anything, no activation is applied (ie. "linear" activation: a(x) = x).

    • use_bias # Boolean, whether the layer uses a bias vector.

  • tf.keras.Sequential # contain a linear stack of layer into a tf.keras.Model.

  • tf.keras.Model # to train and predict

    • config the model with losses and metrics with model.compile(args)

    • train the model with model.fit(x=None,y=None)

      • batch_size # Number of samples per gradient update. If unspecified, batch_size will default to 32.

      • epochs # Number of epochs to train the model

      • verbose # Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch,verbose=2 is recommended when not running interactively

      • validation_data #( valid_X, valid_y )

  • tf.keras.layers.Embedding # Turns positive integers (indexes) into dense vectors of fixed size. as shown in following figure

    • the purpose of the embedding is making the 1-dim integer proceed the muti-dim vectors add. can find the hide feature and connect to predict the labels. in this program ,every word's emotion direction can be trained many times.

  • tf.keras.layer.GlobalAveragePooling1D # add all muti-dim vectors ,if the output layer shape is (32, 10, 64), after the pooling, the shape will be changed as (32,64), as shown in following figure

    •   

code is more simple then theory

# build the model
model = tf.keras.Sequential(
[
# make a word became a 64-dim vector
tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length = max_length),
# add all word vector
tf.keras.layers.GlobalAveragePooling1D(),
# NN
tf.keras.layers.Dense(24, activation = 'relu'),
tf.keras.layers.Dense(1, activation = 'sigmoid')
]
)
model.compile(loss = 'binary_crossentropy', optimizer = 'adam' , metrics = ['accuracy'])

train the model

num_epochs = 30
history = model.fit(train_X, train_y, epochs = num_epochs,
validation_data = (test_X, test_y),
verbose = 2)

after the 30 epochs

Epoch 30/30
597/597 - 8s - loss: 1.8816e-04 - accuracy: 1.0000 - val_loss: 1.2858 - val_accuracy: 0.8216

predict our sentence

mytest_sentence = ["you are so cute", "you are so cute but looks like stupid"]
mytest_X = tokenizer.texts_to_sequences(mytest_sentence)
mytest_X = pad_sequences(mytest_X ,
maxlen = max_length,
truncating = trunc_type,
padding = padding_type)

mytest_y = model.predict(mytest_X)
# if result is bigger then 0.5 ,it means the title is Sarcasm
print(mytest_y > 0.5)
'''
[[False]
[ True]]
'''

reference:

tensorflow API: https://www.tensorflow.org/api_docs/python/tf/keras/Sequential

colab: bit.ly/tfw-sarcembed

Sentiment analysis in nlp的更多相关文章

  1. Sentiment Analysis resources

    Wikipedia: Sentiment analysis (also known as opinion mining) refers to the use of natural language p ...

  2. NAACL 2013 Paper Mining User Relations from Online Discussions using Sentiment Analysis and PMF

    中文简单介绍:本文对怎样基于情感分析和概率矩阵分解从网络论坛讨论中挖掘用户关系进行了深入研究. 论文出处:NAACL'13. 英文摘要: Advances in sentiment analysis ...

  3. 【Deep Learning Nanodegree Foundation笔记】第 10 课:Sentiment Analysis with Andrew Trask

    In this lesson, Andrew Trask, the author of Grokking Deep Learning, will walk you through using neur ...

  4. 论文阅读:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis

    论文标题:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis 论文链接:http://arxi ...

  5. 使用RNN进行imdb影评情感识别--use RNN to sentiment analysis

    原创帖子,转载请说明出处 一.RNN神经网络结构 RNN隐藏层神经元的连接方式和普通神经网路的连接方式有一个非常明显的区别,就是同一层的神经元的输出也成为了这一层神经元的输入.当然同一时刻的输出是不可 ...

  6. Deep Learning for NLP 文章列举

    Deep Learning for NLP 文章列举 原文链接:http://www.xperseverance.net/blogs/2013/07/2124/   大部分文章来自: http://w ...

  7. 转 Deep Learning for NLP 文章列举

    原文链接:http://www.xperseverance.net/blogs/2013/07/2124/   大部分文章来自: http://www.socher.org/ http://deepl ...

  8. Standford CoreNLP--Sentiment Analysis初探

    Stanford CoreNLP功能之一是Sentiment Analysis(情感分析),可以标识出语句的正面或者负面情绪,包括:Positive,Neutral,Negative三个值. 运行有两 ...

  9. Java自然语言处理NLP工具包

    1. Java自然语言处理 LingPipe LingPipe是一个自然语言处理的Java开源工具包.LingPipe目前已有很丰富的功能,包括主题分类(Top Classification).命名实 ...

随机推荐

  1. go源码阅读 - container/ring

    相比于List,环的结构有些特殊,环的头部就是尾部,所以每个元素可以代表自身这个环.环其实是一个双向回环链表.type Ring struct { next, prev *Ring Value int ...

  2. 1903021116—吉琛—Java第七周作业—客户类测试

    项目 内容 课程班级博客链接 19信计班 这个作业要求链接 第七周作业链接 博客名称 学号-姓名-Java第七周作业-客户类测试 要求 每道题要有题目,代码(使用插入代码,不会插入代码的自己查资料解决 ...

  3. transform动画

    1. html 结构 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  4. Firefox 国外换为国内同步的服务器地址

    地址栏键入 about:config点击 接受风险并同意查找 identity把右侧字符串包含 firefox.com 替换为 firefox.com.cn 即换为国内同步服务器反之把 firefox ...

  5. XCTF练习题---CRYPTO---Morse解析

    XCTF练习题---CRYPTO---Morse解析 flag:morsecodeissointeresting 解题步骤: 1.观察题目,下载附件进行查看 2.得到文件内容,由0.1组成,初步判断为 ...

  6. Halo 开源项目学习(七):缓存机制

    基本介绍 我们知道,频繁操作数据库会降低服务器的系统性能,因此通常需要将频繁访问.更新的数据存入到缓存.Halo 项目也引入了缓存机制,且设置了多种实现方式,如自定义缓存.Redis.LevelDB ...

  7. 用 Docker 快速搭建 Kafka 集群

    开源Linux 一个执着于技术的公众号 版本 •JDK 14•Zookeeper•Kafka 安装 Zookeeper 和 Kafka Kafka 依赖 Zookeeper,所以我们需要在安装 Kaf ...

  8. 推荐一款数据mock框架,无需任何依赖,贼牛逼

    fox-mock 是基于Java Agent实现的自测,联调Mock利器.能解决你的这些问题: 开发过程中,依赖了下游多个接口,想跑个单测都必须得等下游把服务部署好 联调过程中,下游某个接口出问题,阻 ...

  9. TCP 协议有哪些缺陷?

    作者:小林coding 图解计算机基础网站:https://xiaolincoding.com 大家好,我是小林. 忽然思考一个问题,TCP 通过序列号.确认应答.超时重传.流量控制.拥塞控制等方式实 ...

  10. spring boot rest controller 自定义反序列化 Date 格式

    @JsonFormat(pattern = DatePattern.NORM_DATE_PATTERN) private Date time;