从题面中四元组\((i,h_i,j,h_j)\)限制选择车子型号,不难想到这题要用\(2-SAT\)解决。

考虑转化为\(2-SAT\)模型,发现除地图\(x\)外,其他地图都只有两种车子型号可以参加,那么就把这两种型号转化为两种状态。

若\(S_i=a\),则状态为\(B\)和\(C\)。

若\(S_i=b\),则状态为\(A\)和\(C\)。

若\(S_i=c\),则状态为\(A\)和\(B\)。

然后讨论四元组的情况,设\(i\)为输入的状态,\(i^\prime\)为另一个状态。

若在第\(i\)场,\(h_i\)不可用,则不进行连边。

若在第\(i\)场,\(h_i\)可用,在第\(j\)场,\(h_j\)不可用,则从\(i\)向\(i^\prime\)连边,表示不能选\(i\)。

若两个都可用,则从\(i\)向\(j\)连边,表示若选\(i\),则一定选\(j\),同时从\(j^\prime\)向\(i^\prime\)连边,这里表示若没有选\(j\),则一定没有选\(i\)。

继续考虑如何处理地图\(x\),发现其数量\(d\leqslant8\),数据规模很小,那么我们就可以用\(dfs\)将其所有可能的情况枚举一遍,再检查是否合法。

我们只需考虑地图\(x\)等价于地图\(a\)和地图\(b\)两种情况,因为此时已经包括\(A,B,C\)三种车型了。

时间复杂度为\(O(2^d(n+m))\)。

实现细节还是蛮多的,不清楚的就看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 1000010
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,d,m,x_cnt;
bool flag;
char s[maxn],a[5],b[5],c1[maxn],c2[maxn];
int pos[maxn];
struct node
{
int x,y;
char a,b;
}t[maxn];
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
int dfn_cnt,co_cnt,top;
int dfn[maxn],low[maxn],co[maxn],st[maxn];
bool vis[maxn];
void tarjan(int x)
{
dfn[x]=low[x]=++dfn_cnt;
st[++top]=x;
vis[x]=true;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(!dfn[y])
{
tarjan(y);;
low[x]=min(low[x],low[y]);
}
else if(vis[y])
low[x]=min(low[x],dfn[y]);
}
if(low[x]==dfn[x])
{
co_cnt++;
int now;
do
{
now=st[top--];
vis[now]=false;
co[now]=co_cnt;
}while(now!=x);
}
}
bool check()
{
for(int i=1;i<=2*n;++i)
if(!dfn[i])
tarjan(i);
for(int i=1;i<=n;++i)
if(co[i]==co[i+n])
return false;
return true;
}
void clear()
{
edge_cnt=dfn_cnt=co_cnt=top=0;
memset(st,0,sizeof(st));
memset(co,0,sizeof(co));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(vis,0,sizeof(vis));
memset(head,0,sizeof(head));
}
void work()
{
clear();
for(int i=1;i<=m;++i)
{
int x=t[i].x,y=t[i].y;
char a=t[i].a,b=t[i].b;
if(s[x]==a) continue;
if(s[y]==b)
{
add(x+(a==c2[x])*n,x+(a==c1[x])*n);
continue;
}
add(x+(a==c2[x])*n,y+(b==c2[y])*n);
add(y+(b==c1[y])*n,x+(a==c1[x])*n);
}
if(check())
{
flag=true;
for(int i=1;i<=n;i++)
{
if(co[i]<co[i+n]) printf("%c",c1[i]);
else printf("%c",c2[i]);
}
}
}
void dfs(int x)
{
if(flag) return;
if(x==d+1)
{
work();
return;
}
int now=pos[x];
s[now]='A',c1[now]='B',c2[now]='C',dfs(x+1);
s[now]='B',c1[now]='A',c2[now]='C',dfs(x+1);
}
int main()
{
read(n),read(d);
scanf("%s",s+1);
for(int i=1;i<=n;++i)
{
s[i]+='A'-'a';
if(s[i]=='A') c1[i]='B',c2[i]='C';
if(s[i]=='B') c1[i]='A',c2[i]='C';
if(s[i]=='C') c1[i]='A',c2[i]='B';
if(s[i]=='X') pos[++x_cnt]=i;
}
read(m);
for(int i=1;i<=m;++i)
{
read(t[i].x),scanf("%s",a),read(t[i].y),scanf("%s",b);
t[i].a=a[0],t[i].b=b[0];
}
dfs(1);
if(!flag) printf("-1");
return 0;
}

题解 洛谷 P3825 【[NOI2017]游戏】的更多相关文章

  1. 洛谷 P3825 [NOI2017]游戏 【2-SAT+状压】

    UOJ和洛谷上能A,bzoj 8ms即WA,现在也不是知道为啥--因为我太弱了 先看数据范围发现d非常小,自然想到了状压. 所以先假装都是只能跑两种车的,这显然就是个2-SAT问题了:对于x场没有hx ...

  2. 洛谷P3825 [NOI2017]游戏(2-SAT)

    传送门 果然图论的题永远建图最麻烦……看着题解代码的建图过程真的很珂怕…… 先不考虑地图$x$,那么每一个地图都只能用两种赛车,于是我们可以用2-SAT来搞,用$i$表示这个地图能用的第一辆车,$i' ...

  3. 洛谷3825 [NOI2017]游戏 2-sat

    原文链接http://www.cnblogs.com/zhouzhendong/p/8146041.html 题目传送门 - 洛谷3825 题解 我们考虑到地图中x的个数很少,最多只有8个. 所以我们 ...

  4. P3825 [NOI2017]游戏

    题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\pri ...

  5. 洛谷 P2197 nim游戏

    洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取 ...

  6. 洛谷 P1965 转圈游戏

    洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...

  7. [Luogu P3825] [NOI2017] 游戏 (2-SAT)

    [Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候 ...

  8. 【题解】洛谷P1070 道路游戏(线性DP)

    次元传送门:洛谷P1070 思路 一开始以为要用什么玄学优化 没想到O3就可以过了 我们只需要设f[i]为到时间i时的最多金币 需要倒着推回去 即当前值可以从某个点来 那么状态转移方程为: f[i]= ...

  9. 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山

    前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...

随机推荐

  1. Python爬虫实战,完整的思路和步骤(附源码)

    前言 小的时候心中总有十万个为什么类似的问题,今天带大家爬取一个问答类的网站. 本堂课使用正则表达式对文本类的数据进行提取,正则表达式是数据提取的通用方法. 环境介绍: python 3.6 pych ...

  2. 3、尚硅谷_SSM高级整合_创建Maven项目.avi

    Maven中dependencyManagement作用说明 在Maven多模块的时候,管理依赖关系是非常重要的,各种依赖包冲突,查询问题起来非常复杂,于是就用到了<dependencyMana ...

  3. windows虚拟机安装mac

    在虚拟机上安装mac 首先参考这个:http://jingyan.baidu.com/article/7f41ecec039936593d095c87.html 如果完成不了,请参看下面的.     ...

  4. jquery入门(2)

    3.jQuery常用方法 3.1 dom属性相关方法 addClass() 为每个匹配的元素添加指定的样式名 $('div').addClass('box'); //为页面中所有的div添加一个box ...

  5. Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  6. asp .net core发布订阅kafka

    Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性: 通过O的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能. 高吞吐量:即使是非常普通的硬件Ka ...

  7. LeetCode64. 最小路径和

    这题和62题以及63题类似,只不过dp数组的状态表示变了,这里dp数组不再表示方案数,而是到当前格子的最小路径和.可以发现:要到达第i行第j列的格子,只有从第i - 1行第j列的格子或第i行第j - ...

  8. springsecurity简单学习

    一.初识SpringSecurity 在springboot项目中加入spring security. 1.在pom.xml中加入依赖 <dependency> <groupId&g ...

  9. 「MoreThanJava」Day2:变量、数据类型和运算符

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 ...

  10. 这些 CSS 命名规范将省下你大把调试时间

    我听说很多开发者厌恶 CSS.而在我的经验中,这往往是由于他们并没有花时间来学习 CSS. CSS 算不上是最优美的『语言』,但迄今二十多年来,它都是美化 web 举足轻重的工具.从这点来说,也还算不 ...