通信网络

201709-4

  • 一看到题目分析了题意之后,我就想到用floyd算法来求解每一对顶点的最短路。如果一个点和任意一个点都有最短路(不为INF),那么这就是符合的一个答案。可是因为题目超时,只能拿60分。
  • 另一种解法就是使用dfs把图简单的遍历一遍就可以了。这里要用到两遍dfs反着也要建图。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
const int INF=0X3F3F3F3F;
const int maxn=1003;
int n,m;
int map[maxn][maxn];
int map1[maxn][maxn];
bool vis[maxn];
bool vis1[maxn];
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m;
memset(map,INF,sizeof(map));
memset(map1,INF,sizeof(map1));
for(int i=0;i<m;i++){
int a,b;
cin>>a>>b;
map[a][b]=1;
map1[b][a]=1;
}
for(int i=1;i<=n;i++){
map[i][i]=0;
map1[i][i]=0;
vis[i]=true;
vis1[i]=true;
}
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
map[i][j]=min(map[i][j],map[i][k]+map[k][j]);
map1[i][j]=min(map1[i][j],map1[i][k]+map1[k][j]);
}
}
}
int ans=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(map[i][j]==INF&&map[j][i]==INF&&map1[i][j]==INF&&map1[j][i]==INF){
vis[i]=false;
break;
}
}
if(vis[i]){
ans++;
//cout<<i<<endl;
}
}
cout<<ans<<endl;
//system("pause");
return 0;
}

以下是100分的使用dfs求解的算法代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
using namespace std;
const int maxn=1003;
int n,m;
bool vis1[maxn];
bool vis2[maxn];
vector<int> v1[maxn];
vector<int> v2[maxn];
void dfs(int i){
for(int j=0;j<v1[i].size();j++){
if(!vis1[v1[i][j]]){
vis1[v1[i][j]]=true;
dfs(v1[i][j]);
}
}
}
void dfsr(int i){
for(int j=0;j<v2[i].size();j++){
if(!vis2[v2[i][j]]){
vis2[v2[i][j]]=true;
dfsr(v2[i][j]);
}
}
} int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m;
for(int i=0;i<m;i++){
int a,b;
cin>>a>>b;
v1[a].push_back(b);
v2[b].push_back(a);
}
int ans=0;
for(int i=1;i<=n;i++){
memset(vis1,0,sizeof(vis1));
memset(vis2,0,sizeof(vis2));
vis1[i]=true;
dfs(i);
vis2[i]=true;
dfsr(i);
bool flag=true;
for(int j=1;j<=n;j++){
if(!vis1[j]&&!vis2[j]){
flag=false;
break;
}
}
if(flag)
ans++;
}
cout<<ans<<endl;
//system("pause");
return 0;
}

CCF(通信网络):简单DFS+floyd算法的更多相关文章

  1. 【CCF】通信网络 简单搜索

    去重!不然有环就直接挂掉了...0分 #include<iostream> #include<cstdio> #include<string> #include&l ...

  2. Floyd算法简单实现(C++)

    图的最短路径问题主要包括三种算法: (1)Dijkstra (没有负权边的单源最短路径) (2)Floyed (多源最短路径) (3)Bellman (含有负权边的单源最短路径) 本文主要讲使用C++ ...

  3. 图论算法(二)最短路算法:Floyd算法!

    最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写 ...

  4. CCF CSP 201709-4 通信网络

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201709-4 通信网络 问题描述 某国的军队由N个部门组成,为了提高安全性,部门之间建立了M ...

  5. floyd算法 青云的机房组网方案(简单)

    青云的机房组网方案(简单) 青云现在要将 nn 个机房连成一个互相连通的网络.工程师小王设计出一个方案:通过在 nn 个机房之间铺设 n-1n−1 条双向的光纤,将所有的机房连接.可以假设数据在两个机 ...

  6. ccf认证 201709-4 通信网络 java实现

    试题编号:                                                               201709-4 试题名称: 通信网络 时间限制: 1.0s 内 ...

  7. 通信网络 ccf

    试题编号: 201709-4 试题名称: 通信网络 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 某国的军队由N个部门组成,为了提高安全性,部门之间建立了M条通路,每条通路只 ...

  8. 算法笔记_069:Floyd算法简单介绍(Java)

    目录 1 问题描述 2 解决方案 2.1 使用Floyd算法得到最短距离示例 2.2 具体编码   1 问题描述 何为Floyd算法? Floyd算法功能:给定一个加权连通图,求取从每一个顶点到其它所 ...

  9. [图论]Floyd 算法小结

    Floyd 算法小结  By Wine93 2013.11 1. Floyd算法简介 Floyd算法利用动态规划思想可以求出任意2点间的最短路径,时间复杂度为O(n^3),对于稠密图, 效率要高于执行 ...

随机推荐

  1. Panasonic Programming Contest (AtCoder Beginner Contest 186) E.Throne (数学,线性同余方程)

    题意:有围着一圈的\(N\)把椅子,其中有一个是冠位,你在离冠位顺时针\(S\)把椅子的位置,你每次可以顺时针走\(K\)个椅子,问最少要走多少次才能登上冠位,或者走不到冠位. 题解:这题和洛谷那个青 ...

  2. HDU - 3282 优先队列的使用

    题意: 按照顺序给你n个数,当数的数量是奇数的时候就输出它们的中位数 题解: 优先队列默认是大顶堆,即priority_queue.top()是这个队列中的最大值 那么我们就可以先创造一个大顶堆优先队 ...

  3. 51Nod - 1632

    B国拥有n个城市,其交通系统呈树状结构,即任意两个城市存在且仅存在一条交通线将其连接.A国是B国的敌国企图秘密发射导弹打击B国的交通线,现假设每条交通线都有50%的概率被炸毁,B国希望知道在被炸毁之后 ...

  4. SPF POJ - 1523 割点+并查集

    题意: 问你这个图中哪个点是割点,如果把这个点去掉会有几个子网 代码: 1 //给你几个点,用着几个点形成了一个图.输入边形成的图,问你这个图中有多少个割点.每一个割点去掉后会形成几个强连通分量 2 ...

  5. 洛谷 P1429 平面最近点对(加强版) (分治模板题)

    题意:有\(n\)个点对,找到它们之间的最短距离. 题解:我们先对所有点对以\(x\)的大小进行排序,然后分治,每次左右二等分递归下去,当\(l+1=r\)的时候,我们计算一下距离直接返回给上一层,若 ...

  6. js 可选链 & 空值合并 In Action

    js 可选链 & 空值合并 In Action const obj = { props: { name: 'eric', }, // prop, 不存在的属性 ️ }; console.log ...

  7. 英语能力考试 All In One

    英语能力考试 All In One 托福,雅思,托业 TOEIC 托业考试 Test of English for International Communication (TOEIC) 国际交流英语 ...

  8. The Best One iOS Contacts App

    The Best One iOS Contacts App iPhone Contacts App SwiftUI Awesome iOS Contacts App 一款高度还原华为通讯录 iOS A ...

  9. module patterns

    module patterns ebooks https://github.com/xyzata/2017-new-ebooks/blob/master/Succinctly/modulepatter ...

  10. Dart 编写Api弃用警告

    例如body2在以后的版本将被bodyText1代替 @Deprecated( 'This is the term used in the 2014 version of material desig ...