CCF(通信网络):简单DFS+floyd算法
通信网络
201709-4
- 一看到题目分析了题意之后,我就想到用floyd算法来求解每一对顶点的最短路。如果一个点和任意一个点都有最短路(不为INF),那么这就是符合的一个答案。可是因为题目超时,只能拿60分。
- 另一种解法就是使用dfs把图简单的遍历一遍就可以了。这里要用到两遍dfs反着也要建图。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
const int INF=0X3F3F3F3F;
const int maxn=1003;
int n,m;
int map[maxn][maxn];
int map1[maxn][maxn];
bool vis[maxn];
bool vis1[maxn];
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m;
memset(map,INF,sizeof(map));
memset(map1,INF,sizeof(map1));
for(int i=0;i<m;i++){
int a,b;
cin>>a>>b;
map[a][b]=1;
map1[b][a]=1;
}
for(int i=1;i<=n;i++){
map[i][i]=0;
map1[i][i]=0;
vis[i]=true;
vis1[i]=true;
}
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
map[i][j]=min(map[i][j],map[i][k]+map[k][j]);
map1[i][j]=min(map1[i][j],map1[i][k]+map1[k][j]);
}
}
}
int ans=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(map[i][j]==INF&&map[j][i]==INF&&map1[i][j]==INF&&map1[j][i]==INF){
vis[i]=false;
break;
}
}
if(vis[i]){
ans++;
//cout<<i<<endl;
}
}
cout<<ans<<endl;
//system("pause");
return 0;
}
以下是100分的使用dfs求解的算法代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
using namespace std;
const int maxn=1003;
int n,m;
bool vis1[maxn];
bool vis2[maxn];
vector<int> v1[maxn];
vector<int> v2[maxn];
void dfs(int i){
for(int j=0;j<v1[i].size();j++){
if(!vis1[v1[i][j]]){
vis1[v1[i][j]]=true;
dfs(v1[i][j]);
}
}
}
void dfsr(int i){
for(int j=0;j<v2[i].size();j++){
if(!vis2[v2[i][j]]){
vis2[v2[i][j]]=true;
dfsr(v2[i][j]);
}
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m;
for(int i=0;i<m;i++){
int a,b;
cin>>a>>b;
v1[a].push_back(b);
v2[b].push_back(a);
}
int ans=0;
for(int i=1;i<=n;i++){
memset(vis1,0,sizeof(vis1));
memset(vis2,0,sizeof(vis2));
vis1[i]=true;
dfs(i);
vis2[i]=true;
dfsr(i);
bool flag=true;
for(int j=1;j<=n;j++){
if(!vis1[j]&&!vis2[j]){
flag=false;
break;
}
}
if(flag)
ans++;
}
cout<<ans<<endl;
//system("pause");
return 0;
}
CCF(通信网络):简单DFS+floyd算法的更多相关文章
- 【CCF】通信网络 简单搜索
去重!不然有环就直接挂掉了...0分 #include<iostream> #include<cstdio> #include<string> #include&l ...
- Floyd算法简单实现(C++)
图的最短路径问题主要包括三种算法: (1)Dijkstra (没有负权边的单源最短路径) (2)Floyed (多源最短路径) (3)Bellman (含有负权边的单源最短路径) 本文主要讲使用C++ ...
- 图论算法(二)最短路算法:Floyd算法!
最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写 ...
- CCF CSP 201709-4 通信网络
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201709-4 通信网络 问题描述 某国的军队由N个部门组成,为了提高安全性,部门之间建立了M ...
- floyd算法 青云的机房组网方案(简单)
青云的机房组网方案(简单) 青云现在要将 nn 个机房连成一个互相连通的网络.工程师小王设计出一个方案:通过在 nn 个机房之间铺设 n-1n−1 条双向的光纤,将所有的机房连接.可以假设数据在两个机 ...
- ccf认证 201709-4 通信网络 java实现
试题编号: 201709-4 试题名称: 通信网络 时间限制: 1.0s 内 ...
- 通信网络 ccf
试题编号: 201709-4 试题名称: 通信网络 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 某国的军队由N个部门组成,为了提高安全性,部门之间建立了M条通路,每条通路只 ...
- 算法笔记_069:Floyd算法简单介绍(Java)
目录 1 问题描述 2 解决方案 2.1 使用Floyd算法得到最短距离示例 2.2 具体编码 1 问题描述 何为Floyd算法? Floyd算法功能:给定一个加权连通图,求取从每一个顶点到其它所 ...
- [图论]Floyd 算法小结
Floyd 算法小结 By Wine93 2013.11 1. Floyd算法简介 Floyd算法利用动态规划思想可以求出任意2点间的最短路径,时间复杂度为O(n^3),对于稠密图, 效率要高于执行 ...
随机推荐
- Panasonic Programming Contest (AtCoder Beginner Contest 186) E.Throne (数学,线性同余方程)
题意:有围着一圈的\(N\)把椅子,其中有一个是冠位,你在离冠位顺时针\(S\)把椅子的位置,你每次可以顺时针走\(K\)个椅子,问最少要走多少次才能登上冠位,或者走不到冠位. 题解:这题和洛谷那个青 ...
- HDU - 3282 优先队列的使用
题意: 按照顺序给你n个数,当数的数量是奇数的时候就输出它们的中位数 题解: 优先队列默认是大顶堆,即priority_queue.top()是这个队列中的最大值 那么我们就可以先创造一个大顶堆优先队 ...
- 51Nod - 1632
B国拥有n个城市,其交通系统呈树状结构,即任意两个城市存在且仅存在一条交通线将其连接.A国是B国的敌国企图秘密发射导弹打击B国的交通线,现假设每条交通线都有50%的概率被炸毁,B国希望知道在被炸毁之后 ...
- SPF POJ - 1523 割点+并查集
题意: 问你这个图中哪个点是割点,如果把这个点去掉会有几个子网 代码: 1 //给你几个点,用着几个点形成了一个图.输入边形成的图,问你这个图中有多少个割点.每一个割点去掉后会形成几个强连通分量 2 ...
- 洛谷 P1429 平面最近点对(加强版) (分治模板题)
题意:有\(n\)个点对,找到它们之间的最短距离. 题解:我们先对所有点对以\(x\)的大小进行排序,然后分治,每次左右二等分递归下去,当\(l+1=r\)的时候,我们计算一下距离直接返回给上一层,若 ...
- js 可选链 & 空值合并 In Action
js 可选链 & 空值合并 In Action const obj = { props: { name: 'eric', }, // prop, 不存在的属性 ️ }; console.log ...
- 英语能力考试 All In One
英语能力考试 All In One 托福,雅思,托业 TOEIC 托业考试 Test of English for International Communication (TOEIC) 国际交流英语 ...
- The Best One iOS Contacts App
The Best One iOS Contacts App iPhone Contacts App SwiftUI Awesome iOS Contacts App 一款高度还原华为通讯录 iOS A ...
- module patterns
module patterns ebooks https://github.com/xyzata/2017-new-ebooks/blob/master/Succinctly/modulepatter ...
- Dart 编写Api弃用警告
例如body2在以后的版本将被bodyText1代替 @Deprecated( 'This is the term used in the 2014 version of material desig ...