轻量级CNN模型之squeezenet
SqueezeNet
论文地址:https://arxiv.org/abs/1602.07360
和别的轻量级模型一样,模型的设计目标就是在保证精度的情况下尽量减少模型参数.核心是论文提出的一种叫"fire module"的卷积方式.
设计策略

- 主要用1x1卷积核,而不是3x3.
- 减少3x3卷积核作用的channel.
- 推迟下采样的时间.以获取更大尺寸的feature map.这一点是处于精度的考虑.毕竟feature map的resolution越大,信息越丰富.下采样主要通过pool来完成或者卷积的时候控制stride大小.
Fire Module
这个就是网络的核心组件了.

分2部分:
- squeeze convolution layer
- expand layer
其中squeeze只有1x1filter,expand layer由1x1和3x3filter组成.
在squeeze层卷积核数记为\(s_{1x1}\),在expand层,记1x1卷积核数为\(e_{1x1}\),而3x3卷积核数为\(e_{3x3}\),这三个属于超参数,可调。为了尽量降低3x3的输入通道数,让\(s_{1x1}<e_{1x1}+e_{3x3}\)。
这两层的设计分别体现了策略1(多用1x1filter)和策略2(减少3x3filter作用channel).
首先,squeeze convolution layer通过控制1x1卷积核数量达到把输入的channel数目降低的目的.这个是降低参数的最关键的一步.
然后,分别用1x1卷积核和3x3卷积核去做卷积.然后得到不同depth的输出,concat起来.([x,x,depth1],[x,x,depth2]-->[x,x,depth1+depth2])
代码实现
torch的官方实现:https://pytorch.org/docs/stable/_modules/torchvision/models/squeezenet.html
import torch
import torch.nn as nn
class Fire(nn.Module):
def __init__(self, inplanes, squeeze_planes,
expand1x1_planes, expand3x3_planes):
super(Fire, self).__init__()
self.inplanes = inplanes
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
self.squeeze_activation = nn.ReLU(inplace=True)
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
kernel_size=1)
self.expand1x1_activation = nn.ReLU(inplace=True)
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
kernel_size=3, padding=1)
self.expand3x3_activation = nn.ReLU(inplace=True)
def forward(self, x):
x = self.squeeze_activation(self.squeeze(x))
print(x.shape)
e_1 = self.expand1x1(x)
print(e_1.shape)
e_3 = self.expand3x3(x)
print(e_3.shape)
return torch.cat([
self.expand1x1_activation(e_1),
self.expand3x3_activation(e_3)
], 1)
很显然地,squeeze convolution layer把channel数量降下来了,所以参数少了很多.
以输入tensor为[n,c,h,w]=[1,96,224,224]举例,假设fire module的squeeze layer的卷积核数量为6,expand layer中1x1卷积核数量为5,3x3卷积核数量为4.
则fire module的参数数量为1x1x96x6 + 1x1x6x5 + 3x3x6x4=822.
普通的3x3卷积,得到depth=9的feature map的话需要3x3x96x9=7776个参数.
所以模型才可以做到很小.
网络结构

基本就是fire module的堆叠.中间穿插了一些maxpool对feature map下采样. 注意一下最后用了dropout以及全局平均池化而不是全连接来完成分类.
最左边的就是类似vgg的堆叠式的结构.中间和右边的参考了resnet的skip-connection.
class SqueezeNet(nn.Module):
def __init__(self, version='1_0', num_classes=1000):
super(SqueezeNet, self).__init__()
self.num_classes = num_classes
if version == '1_0':
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=7, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(96, 16, 64, 64),
Fire(128, 16, 64, 64),
Fire(128, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 32, 128, 128),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(512, 64, 256, 256),
)
elif version == '1_1':
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(64, 16, 64, 64),
Fire(128, 16, 64, 64),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(128, 32, 128, 128),
Fire(256, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
Fire(512, 64, 256, 256),
)
else:
# FIXME: Is this needed? SqueezeNet should only be called from the
# FIXME: squeezenet1_x() functions
# FIXME: This checking is not done for the other models
raise ValueError("Unsupported SqueezeNet version {version}:"
"1_0 or 1_1 expected".format(version=version))
# Final convolution is initialized differently from the rest
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
final_conv,
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1))
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m is final_conv:
init.normal_(m.weight, mean=0.0, std=0.01)
else:
init.kaiming_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
return torch.flatten(x, 1)
https://pytorch.org/hub/pytorch_vision_squeezenet/
这里有一个用torch中的模型做推理的例子,
.....
with torch.no_grad():
output = model(input_batch)
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
print(torch.nn.functional.softmax(output[0], dim=0))
CNN结构设计的探索
主要从2个方面做实验探讨了不同结构对模型精度和模型大小的影响.

- fire module怎么设计,squeeze layer和expand layer的filter数量怎么设计
- fire module怎么串起来形成一个网络,是简单堆叠还是引入bypass
关于第一点fire module中各种filter占比的实验结果如下图:

这里的sr指的是squeeze layer的卷积核数量/expand layer比例.3x3filter比例指expand layer里3x3filter比例.
具体设计参考论文:

一点思考:
1x1的卷积核关联了某个位置的feature所有channel上的信息.3x3的卷积核关联了多个位置的feature的所有channel的信息.按道理说3x3的越多应该模型精度越好,但实验数据显示并非如此.可能有些是噪音,3x3卷积参考太多周围的feature反而导致精度下降. 这也是深度学习现在被比较多诟病的一点,太黑盒了.只知道能work,为啥work不好解释.不同的数据集可能不同的参数表现会不一样,很难讲哪个最优,调参比较依赖经验.
关于第二点在layer之间采用不同的连接方式,实验结果如下:

轻量级CNN模型之squeezenet的更多相关文章
- 轻量级CNN模型mobilenet v1
mobilenet v1 论文解读 论文地址:https://arxiv.org/abs/1704.04861 核心思想就是通过depthwise conv替代普通conv. 有关depthwise ...
- 深度学习方法(七):最新SqueezeNet 模型详解,CNN模型参数降低50倍,压缩461倍!
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 继续前面关于深度学习CNN经典模型的 ...
- CNN 模型压缩与加速算法综述
本文由云+社区发表 导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一. 前言 自从AlexNet一举夺得 ...
- 基于Pre-Train的CNN模型的图像分类实验
基于Pre-Train的CNN模型的图像分类实验 MatConvNet工具包提供了好几个在imageNet数据库上训练好的CNN模型,可以利用这个训练好的模型提取图像的特征.本文就利用其中的 “im ...
- 卷积神经网络(CNN)模型结构
在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用 ...
- FaceRank-人脸打分基于 TensorFlow 的 CNN 模型
FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...
- Keras入门(四)之利用CNN模型轻松破解网站验证码
项目简介 在之前的文章keras入门(三)搭建CNN模型破解网站验证码中,笔者介绍介绍了如何用Keras来搭建CNN模型来破解网站的验证码,其中验证码含有字母和数字. 让我们一起回顾一下那篇文 ...
- keras训练cnn模型时loss为nan
keras训练cnn模型时loss为nan 1.首先记下来如何解决这个问题的:由于我代码中 model.compile(loss='categorical_crossentropy', optimiz ...
- keras入门(三)搭建CNN模型破解网站验证码
项目介绍 在文章CNN大战验证码中,我们利用TensorFlow搭建了简单的CNN模型来破解某个网站的验证码.验证码如下: 在本文中,我们将会用Keras来搭建一个稍微复杂的CNN模型来破解以上的 ...
随机推荐
- SpringBoot起飞系列-日志使用(四)
一.SpringBoot中的日志组件 日志是一个系统中不可缺少的组件.在项目中,我们常用的日志组件有JUL.JCL.Jboss-logging.logback.log4j.log4j2.slf4j.. ...
- 品Spring:SpringBoot和Spring到底有没有本质的不同?
现在的Spring相关开发都是基于SpringBoot的. 最后在打包时可以把所有依赖的jar包都打进去,构成一个独立的可执行的jar包.如下图13: 使用java -jar命令就可以运行这个独立的j ...
- 机器学习之SVM调参实例
一.任务 这次我们将了解在机器学习中支持向量机的使用方法以及一些参数的调整.支持向量机的基本原理就是将低维不可分问题转换为高维可分问题,在前面的博客具体介绍过了,这里就不再介绍了. 首先导入相关标准库 ...
- Python 爬虫监控女神的QQ空间新的说说,实现秒赞,并发送说说内容到你的邮箱
这个文章主要是在前一篇文章上新增了说说秒赞的功能 前一篇文章可以了解一下 那么,这次主要功能就是 监控女神的 QQ空间,一旦女神发布新的说说,马上点赞,你的邮箱马上就会收到说说内容,是不是想了解一下 ...
- 设计模式-Builder和Factory模式区别
Builder和Factory模式区别 Builder模式结构: Factory模式一进一出,Builder模式是分步流水线作业.当你需要做一系列有序的工作或者按照一定的逻辑来完成创建一个对象时 Bu ...
- MySQL 中间件汇总比较
360 Atlas 较为活跃,Atlas 是由 360 Web平台部基础架构团队开发维护的一个基于 MySQL 协议的数据中间层项目.它是在mysql-proxy 0.8.2版本的基础上,对其进行了优 ...
- 手把手教你如何在Windows下allure与jenkins的集成生成让你一见钟情的测试报告 - 03(非常详细,非常实用)
简介 好了,国庆假期结束,开始搬砖.为什么要把allure和jenkins集成了?原因是集成以后,我们就可以直接查看allure的结果,不需要重复输入命令.重复使用浏览器打开文件来查看allure的结 ...
- Spring Boot (九): 微服务应用监控 Spring Boot Actuator 详解
1. 引言 在当前的微服务架构方式下,我们会有很多的服务部署在不同的机器上,相互是通过服务调用的方式进行交互,一个完整的业务流程中间会经过很多个微服务的处理和传递,那么,如何能知道每个服务的健康状况就 ...
- 面试题解析|ACL权限控制机制
ACL(Access Control List)访问控制列表 包括三个方面: 一.权限模式(Scheme) 1.IP:从 IP 地址粒度进行权限控制 2.Digest:最常用,用类似于 usernam ...
- 手把手教你安装Eclipse最新版本的详细教程 - 大佬的鸡肋,菜鸟的盛宴(非常详细,非常实用)
简介 首先声明此篇文章主要是针对测试菜鸟或者刚刚入门的小伙们或者童鞋们,大佬就没有必要往下看了. 写这篇文章的由来是因为后边要用这个工具,但是由于某些原因有部分小伙伴和童鞋们可能不会安装此工具,为了方 ...