算法与数据结构基础 - 排序(Sort)
排序基础
排序方法分两大类,一类是比较排序,快速排序(Quick Sort)、归并排序(Merge Sort)、插入排序(Insertion Sort)、选择排序(Selection Sort)、希尔排序(Shell Sort)、堆排序(Heap Sort)等属于比较排序方法,比较排序方法理论最优时间复杂度是O(nlogn),各方法排序过程和原理见 可视化过程。
另一类是非比较排序,被排序元素框定范围的前提下可使用非比较排序方法,例如桶排序(Bucket Sort)、计数排序(Counting Sort)等,时间复杂度可减少至O(n)。
比较排序方法
快速排序(Quick Sort) 快速选择(Quick Select)是快速排序的衍生引用,常用于求中位数、Kth数字。
相关LeetCode题:
973. K Closest Points to Origin 题解
插入排序(Insertion Sort)
相关LeetCode题:
归并排序(Merge Sort) 有一项引申应用、计算数组的Inversions,即求数组中满足于a[i] > a[j] 且 i < j 这样条件的对数,详见 Count Inversions in an array | Set 1 (Using Merge Sort)
C++中提供了两个内置的归并排序方法:
merge(l1.begin(), l1.end(), l2.begin(), l2.end(), result.begin());//which stores the merged array in result
inplace_merge(l.begin(), l.middle, l.end());//where array [begin, middle) is merged with array [middle, end).
相关LeetCode题:
315. Count of Smaller Numbers After Self 题解
非比较排序方法
桶排序(Bucket Sort) 可视化过程,桶排序也有一些引申应用,例如 LeetCode题目 164. Maximum Gap 利用桶划分取值求两元素间隔最大值。
相关LeetCode题:
计数排序(Counting Sort) 可视化过程
相关LeetCode题:
1030. Matrix Cells in Distance Order 题解
排序的应用
实际应用中我们不从头实现排序函数、常直接调用库函数完成排序,如C++ STL中常用的sort、partial_sort等。
相关LeetCode题:
349. Intersection of Two Arrays 题解
350. Intersection of Two Arrays II 题解
976. Largest Perimeter Triangle 题解
非典型排序问题
一些问题要求按一定规则对序列进行排序,比如“奇偶奇偶……”奇数、偶数交叠,或 nums[0] <= nums[1] >= nums[2] <= nums[3]……,我称之为非典型排序问题。
这类问题不能用上述排序方法解决,更多是考量对数组元素排布的处理逻辑。
相关LeetCode题:
922. Sort Array By Parity II 题解
算法与数据结构基础 - 排序(Sort)的更多相关文章
- 算法与数据结构基础 - 分治法(Divide and Conquer)
分治法基础 分治法(Divide and Conquer)顾名思义,思想核心是将问题拆分为子问题,对子问题求解.最终合并结果,分治法用伪代码表示如下: function f(input x size ...
- 算法与数据结构基础 - 贪心(Greedy)
贪心基础 贪心(Greedy)常用于解决最优问题,以期通过某种策略获得一系列局部最优解.从而求得整体最优解. 贪心从局部最优角度考虑,只适用于具备无后效性的问题,即某个状态以前的过程不影响以后的状态. ...
- 算法与数据结构基础 - 广度优先搜索(BFS)
BFS基础 广度优先搜索(Breadth First Search)用于按离始节点距离.由近到远渐次访问图的节点,可视化BFS 通常使用队列(queue)结构模拟BFS过程,关于queue见:算法与数 ...
- 算法与数据结构基础 - 图(Graph)
图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面 ...
- 算法与数据结构基础 - 数组(Array)
数组基础 数组是最基础的数据结构,特点是O(1)时间读取任意下标元素,经常应用于排序(Sort).双指针(Two Pointers).二分查找(Binary Search).动态规划(DP)等算法.顺 ...
- 算法与数据结构基础 - 堆(Heap)和优先级队列(Priority queue)
堆基础 堆(Heap)是具有这样性质的数据结构:1/完全二叉树 2/所有节点的值大于等于(或小于等于)子节点的值: 图片来源:这里 堆可以用数组存储,插入.删除会触发节点shift_down.shif ...
- 算法与数据结构基础 - 哈希表(Hash Table)
Hash Table基础 哈希表(Hash Table)是常用的数据结构,其运用哈希函数(hash function)实现映射,内部使用开放定址.拉链法等方式解决哈希冲突,使得读写时间复杂度平均为O( ...
- 算法与数据结构基础 - 双指针(Two Pointers)
双指针基础 双指针(Two Pointers)是面对数组.链表结构的一种处理技巧.这里“指针”是泛指,不但包括通常意义上的指针,还包括索引.迭代器等可用于遍历的游标. 同方向指针 设定两个指针.从头往 ...
- 算法与数据结构基础 - 二叉树(Binary Tree)
二叉树基础 满足这样性质的树称为二叉树:空树或节点最多有两个子树,称为左子树.右子树, 左右子树节点同样最多有两个子树. 二叉树是递归定义的,因而常用递归/DFS的思想处理二叉树相关问题,例如Leet ...
随机推荐
- 读取ClassPath下resource文件的正确姿势
1.前言 为什么要写这篇文章?身为Java程序员你有没有过每次需要读取 ClassPath 下的资源文件的时候,都要去百度一下,然后看到下面的这种答案: Thread.currentThread(). ...
- django的命令, 配置,以及django使用mysql的流程
1.Django的命令: 下载 pip install django==1.11.16 pip install django==1.11.16 -i 源 创建项目 django-admin start ...
- 通过Spring整合hibernate并进行单元测试(详细)
一. 没有基础hibernate基础的可以点击这里 ---------->ORM----hibernate入门Demo(无敌详细版) 这里我就不详细介绍了.. 二. hibernat.cfg.x ...
- 解决Tomcat catalina.out 不断膨胀,导致磁盘占用过大的问题
到服务器上看了一下任务中心的日志情况,膨胀的很快,必须采取措施限制其增长速度. 我们采用Cronlog组件对此进行日志切分,官网http://cronolog.org/一直未能打开,只能从其它地方寻找 ...
- python 3.7 新特性 - popitem
百度上大多文章说 popitem 随机删除字典的一个键值对 python 3.7 官方文档已经说了,popitem 删除字典最后一个添加进去的键值对
- printf函数的返回值
先看下面一段程序: 文末会给大家推荐几本好书,希望能够需要的朋友一点帮助! #include <stdio.h> int main() { int i = 123; printf(&quo ...
- 修改mysql错误日志级别
show variables like '%log_warnings%'; 1代表开启warning信息,0代表关闭warning信息 set session log_warnings=0; set ...
- UEditor 之初体验后记
1.UEditor 基本介绍 1.1.关于 UEditor 1.2.UEditor 现状 2.UEditor 简单使用 2.1.将 UEditor 源码集成到项目中 2.2.让 UEditor 的 U ...
- py+selenium 报错NameError: name 'NoSuchElementException' is not defined【已解决】
报错:NameError: name 'NoSuchElementException' is not defined 如图 解决方法: 头部加一句:from selenium.common.exc ...
- [vue折线图] 记录SpringBoot+Vue3.0折线图订单信息展示
因公司业务需求,需要做一份订单相关的折线图, 如果其中有一天没有订单的话,这一天就是空缺的,在绘制折线图的时候是不允许的,所有要求把没有订单数据的日期也要在图表显示. 使用技术vue3.0+sprin ...