题目描述

Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间的小路上奔跑。这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径。 
简单的说来, 这些点的布局就是一棵树,且每条边等长,都为1。 对于给定的一个奶牛路径集合,精明的奶牛们会计算出任意点对路径的最大值, 我们称之为这个路径集合的直径。如果直径太大,奶牛们就会拒绝锻炼。 Farmer John把每个点标记为1..V (2 <= V <= 100,000)。为了获得更加短的直径,他可以选择封锁一些已经存在的道路,这样就可以得到更多的路径集合, 从而减小一些路径集合的直径。 我们从一棵树开始,FJ可以选择封锁S (1 <= S <= V-1)条双向路,从而获得 S+1个路径集合。你要做的是计算出最佳的封锁方案,使得他得到的所有路径集合 直径的最大值尽可能小。  
Farmer John告诉你所有V-1条双向道路,每条表述为:顶点A_i (1 <= A_i <= V) 和 B_i (1 <= B_i <= V; A_i!= B_i)连接。  
我们来看看如下的例子:线性的路径集合(7个顶点的树) 1---2---3---4---5---6---7 如果FJ可以封锁两条道路,他可能的选择如下: 1---2 | 3---4 | 5---6---7 这样最长的直径是2,即是最优答案(当然不是唯一的)。 

输入

第1行: 两个空格分隔的整数V和S  
第2~V行: 两个空格分隔的整数A_i和B_i 

输出

输出1行:一个整数,表示FJ可以获得的最大的直径。

样例输入 Copy

7 2
6 7
3 4
6 5
1 2
3 2
4 5

样例输出 Copy

2 

思路:
  • 这题感觉还是挺好想的,一看到最值怎么样,第一反应就是二分之类的东西,然后就发现要一些状态的转移,然后就很容易想到DP。
  • 我们可以二分该最小值,然后验证其是否合法,即保证最长链长度不可大于二分的答案

  • 我们设dp[i]表示以第ii个节点为根的子树中,合法的最长链两端点路径不跨过根节点的链的长度

  • 然后我们就可以用dp【i】计算要砍去多少条边,从而判断当前二分出的答案的合法性

  • 虽然感觉很简单,但一细想发现转移并不是那么好打

  • 显然直接求max(f[son])是不可行的,因为这不保证合法,但我们想,当我们选出两条儿子所在的最长链两端点路径不跨过根节点的链,发现当他们接在一起时长度过大,需要从中砍断的时候,会发现只有两种情况

  • 把最长链链顶的边给砍了最优(如果砍的不是链顶的边,或者砍了较短的链,那就有可能还有其他不合法的情况,还要再砍一次)

  • 砍了之后,不会对其父节点造成影响(由于砍完之后,这两个点都不在一个连通块里,固然不会有影响)。

  • 至此这个题目基本上就可以秒切了,只要将当前点的所有dp【son】从大到小排个序,依次判断相邻的两个最长链两端点路径不跨过根节点的链是否合法,若合法就可以吧dp【i】赋值,否则就继续找,然后砍的数目加一。

代码:

 #include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+;
struct node
{
int to;
int next;
}way[maxn];
int head[maxn];
int tot=;
int fa[maxn];
int top,sumn;
int x,y,s,n;
int a[maxn];
int add(int x,int y)
{
way[++tot].next=head[x];
way[tot].to=y;
head[x]=tot;
}
int dfs(int x,int f,int cut)
{
fa[x]=;
for(int i=head[x];i;i=way[i].next)
{
if(way[i].to!=f)
{
dfs(way[i].to,x,cut);
}
}
top=;
for(int i=head[x];i;i=way[i].next)
{
if(way[i].to!=f)
{
a[++top]=fa[way[i].to]+;
}
}
sort(a+,a++top);
while(top&&a[top]+a[top-]>cut)
{
top--;
sumn++;
}
fa[x]=a[top];
}
int check(int x)
{
sumn=;
dfs(,,x);
return sumn<=s;
}
int main()
{
cin>>n>>s;
for(int i=;i<=n-;i++)
{
cin>>x>>y;
add(x,y);
add(y,x);
} int l=;
int r=n;
while(l<r)
{
int mid=(l+r)>>;
if(check(mid))
{
r=mid;
}
else
{
l=mid+;
}
}
cout<<l<<endl;
return ;
}


问题 C: 「Usaco2010 Dec」奶牛健美操O(∩_∩)O的更多相关文章

  1. BZOJ_2097_[Usaco2010 Dec]Exercise 奶牛健美操_二分答案+树形DP

    BZOJ_2097_[Usaco2010 Dec]Exercise 奶牛健美操_二分答案+树形DP Description Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的 ...

  2. [Usaco2010 Dec]Exercise 奶牛健美操

    [Usaco2010 Dec]Exercise 奶牛健美操 题目 Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑.这些奶牛的路径集合可以被表示成一个点集和一些连 ...

  3. [bzoj2097][Usaco2010 Dec]Exercise 奶牛健美操_贪心_树形dp_二分

    Exercise bzoj-2097 Usaco-2010 Dec 题目大意:题目链接 注释:略. 想法:题目描述生怕你不知道这题在考二分. 关键是怎么验证?我们想到贪心的删边. 这样的策略是显然正确 ...

  4. 【bzoj2097】[Usaco2010 Dec]Exercise 奶牛健美操 二分+贪心

    题目描述 Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑.这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径. ...

  5. BZOJ——T 2097: [Usaco2010 Dec]Exercise 奶牛健美操

    http://www.lydsy.com/JudgeOnline/problem.php?id=2097 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit:  ...

  6. BZOJ2097: [Usaco2010 Dec]Exercise 奶牛健美操 贪心+伪树dp+二分

    //论全局变量的杀伤力....QAQ#include<cstdio> #include<iostream> #include<cstdlib> #include&l ...

  7. BZOJ2097: [Usaco2010 Dec]Exercise 奶牛健美操

    n<=100000的树,砍S<n条边,求砍完后S+1棵树的最大直径的最小值. 树的直径要小小哒,那考虑一棵子树的情况吧!一棵子树的直径,就是子树根节点各儿子的最大深度+次大深度.就下面这样 ...

  8. bzoj 2097: [Usaco2010 Dec]Exercise 奶牛健美操【二分+树形dp】

    二分答案,然后dp判断是否合法 具体方法是设f[u]为u点到其子树中的最长链,每次把所有儿子的f值取出来排序,如果某两条能组合出大于mid的链就断掉f较大的一条 a是全局数组!!所以要先dfs完子树才 ...

  9. BZOJ 2097 [Usaco2010 Dec]Exercise 奶牛健美操

    [题意] 给出一棵树.现在可以在树中删去m条边,使它变成m+1棵树.要求最小化树的直径的最大值. [题解] 二分答案.$Check$的时候用$DP$,记录当前节点每个儿子的直径$v[i]$,如果$v[ ...

随机推荐

  1. 关于ajax提交表单的一些实例及遇到的问题和解决办法

    ajax提交的表单有两种情况: 第一种:input type类型没有file上传文件类型的表单 第二种:input type类型有file上传文件类型的表单 之所以分为两种:是因为原生ajax是不能提 ...

  2. Making the Grade POJ - 3666

    A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would l ...

  3. Python函数参数与参数解构

    1 Python中的函数 函数,从数学的角度来讲是,输入一个参数,经过一个表达式的处理后得到一个结果的输出,即就是x-->y的一个映射.同样,在Python或者任何编程语言中,函数其实就是实现一 ...

  4. 对象模型(Object-Model):关于vptr、vtbl

    当一个类本身定义了虚函数,或其父类有虚函数时,为了支持多态机制,编译器将为该类添加一个虚函数指针(vptr).虚函数指针一般都放在对象内存布局的第一个位置上,这是为了保证在多层继承或多重继承的情况下能 ...

  5. 后渗透神器Cobalt Strike的安装

    0x01 简介 Cobalt Strike集成了端口转发.扫描多模式端口监听Windows exe木马,生成Windows dll(动态链接库)木马,生成java木马,生成office宏病毒,生成木马 ...

  6. Cocos2d-x 学习笔记(11.7) Repeat RepeatForever

    1. 成员变量 Repeat: unsigned int _times; //create参数 unsigned int _total; //执行的次数 float _nextDt; //startW ...

  7. POJ 3020 Antenna Placement(二分图 匈牙利算法)

    题目网址:  http://poj.org/problem?id=3020 题意: 用椭圆形去覆盖给出所有环(即图上的小圆点),有两种类型的椭圆形,左右朝向和上下朝向的,一个椭圆形最多可以覆盖相邻的两 ...

  8. Git基本使用指南

    一.概述 1.    Git与SVN比较 目前用到最广泛的版本控制软件就是SVN和Git,那么这两者之间有什么不同之处呢? 1)     SVN(Subversion)是集中式管理的版本控制器,而Gi ...

  9. CSS布局解决方案(终结版)

    作者:无悔铭 https://segmentfault.com/a/1190000013565024 前端布局非常重要的一环就是页面框架的搭建,也是最基础的一环.在页面框架的搭建之中,又有居中布局.多 ...

  10. zookeeper - 通过java代码连接zookeeper(2)

    首先创建一个Maven项目 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&qu ...