一、Matplotlib中几种图的名字

  1. 折线图:plot
  2. 柱形图:bar
  3. 直方图:hist
  4. 箱线图:box
  5. 密度图:kde
  6. 面积图:area
  7. 散点图:scatter
  8. 散点图矩阵:scatter_matrix
  9. 饼图:pie

二、折线图:plot

  平均值需要先排序后出出图

  df.avg.value_counts().sort_index().plot()

三、柱形图:bar

  可先做数据透视,然后生成柱形图

  df.pivot_table(index='city',columns='education',values='avg',aggfunc='count').plot.bar()

  如果是要做堆叠柱形图,则可设置bar()的参数

  df.pivot_table(index='city',columns='education',values='avg',aggfunc='count').plot.bar(stacked=True) 

  

  如果是要做成条形图,则可修改bar()方法为bar()

  df.pivot_table(index='city',columns='education',values='avg',aggfunc='count').plot.barh()

四、直方图:hist

  df.avg.plot.hist()

  以“education”字段多维分析,对平均值绘制直方图,

  alpha:图形透明度;

  stacked:是否堆叠;

  bins:密度;

  df.groupby('education').apply(lambda x:x.avg).unstack().T.plot.hist(alpha=0.5,stacked=True,bins=30)

五、箱线图:box

  用法一:与“直方图”类似

  df.groupby('education').apply(lambda x:x.avg).unstack().T.plot.box()

  用法二:

  df.boxplot(column='avg',by='education')

六、密度图:kde

  df.avg.plot.kde()

七、面积图:area

  一般将数据进行分类(数据透视),

  df.pivot_table(index='avg',columns='education',values='positonId',aggfunc='count').plot.area()

 八、散点图:scatter

  按公司分类,以平均值为x轴,数量为y轴

  df.groupby('companyId').aggregate(['mean','count']).avg.plot.scatter(x='mean',y='count')

九、散点图矩阵:scatter_matrix(Pandas的函数)

  适用于两个以上的参数,两两组合

  matrix=df.groupby('companyId').aggregate(['mean','count',max]).avg

  pd.plotting.scatter_matrix(matrix.query('count<50'),diagonal='kde')

  查询条件:计数小于50

  diagonal:修改图的类型(kde:密度图)

  

十、饼图:pie

  df.city.value_counts().plot.pie(figsize=(6,6))

  figsize:图的长宽

pandas可视化:各种图的简单使用的更多相关文章

  1. G6:AntV 的图可视化与图分析

    导读 G6 是 AntV 旗下的一款专业级图可视化引擎,它在高定制能力的基础上,提供简单.易用的接口以及一系列设计优雅的图可视化解决方案,是阿里经济体图可视化与图分析的基础设施.今年 AntV 11. ...

  2. MongoDB在Windows下安装、Shell客户端的使用、Bson扩充的数据类型、MongoVUE可视化工具安装和简单使用、Robomongo可视化工具(2)

    一.Windows 下载安装 1.去http://www.mongodb.org/downloads下载,mongodb默认安装在C:\Program Files\MongoDB目录下,到F:\Off ...

  3. 可视化Tensorboard图中的符号意义

    可视化Tensorboard图中的符号意义

  4. NLP(十二)依存句法分析的可视化及图分析

      依存句法分析的效果虽然没有像分词.NER的效果来的好,但也有其使用价值,在日常的工作中,我们免不了要和其打交道.笔者这几天一直在想如何分析依存句法分析的结果,一个重要的方面便是其可视化和它的图分析 ...

  5. pandas知识点脑图汇总

    参考文献: [1]Pandas知识点脑图汇总

  6. Neo4j属性图模型简单介绍

    本文主要是对Neo4j属性图模型简单的介绍. Neo4j是什么? Neo4j是一款是由java语言实现的图数据库,图形数据库将数据以图的数据结构进行存储和管理,并且能够以高度可问的方式优雅地表示任何种 ...

  7. Pandas可视化

    基本绘图:绘图 Series和DataFrame上的这个功能只是使用matplotlib库的plot()方法的简单包装实现.参考以下示例代码 - import pandas as pd import ...

  8. ubuntu安装mysql可视化工具MySQL-workbench及简单操作

    一.使用命令行在ubuntu下安装mysql可视化工具MySQL-workbench Step1:安装MySQL-workbench 方案一:如果你已经装好mysql的相关服务,那么直接使用如下命令即 ...

  9. Pandas plot出图

    1.创建一个Series 这是一个线性的数据,我们随机生成1000个数据,Series 默认的 index 就是从0开始的整数,但是这里我显式赋值以便让大家看的更清楚 >>> imp ...

随机推荐

  1. mac下使用zerobrane调试cocos2dx的lua

    环境:MacOSx 10.9.2, Lua 5.1.4, luaSocket 2.0.2, xcode5.0.2 所需文件 luasocket-2.0.2.zip,ZeroBraneStudioEdu ...

  2. python案例:使用if语句实现一个猜拳游戏

    任务要求: 在控制台中提示输入石头.剪刀.布,按回车键,然后给出游戏结果. 分析: 我们知道在游戏规则中,石头克剪刀,剪刀克布,布克石头.但是这在计算机中并不是很好直接的表示,因此我们分别用0.1.2 ...

  3. Android Pie 私人 DNS 使用教程

    本文首发于:微信公众号「运维之美」,公众号 ID:Hi-Linux. ​「运维之美」是一个有情怀.有态度,专注于 Linux 运维相关技术文章分享的公众号.公众号致力于为广大运维工作者分享各类技术文章 ...

  4. 《机器学习技法》---线性SVM

    (本文内容和图片来自林轩田老师<机器学习技法>) 1. 线性SVM的推导 1.1 形象理解为什么要使用间隔最大化 容忍更多的测量误差,更加的robust.间隔越大,噪声容忍度越大: 1.2 ...

  5. 记一次 Windows MySQL 恢复

    0x00 事件 因为本地的服务器硬件出现故障,导致一台 Windows 系统的开发环境挂了,且无法短时间内恢复状态. 应急方案是使用了云上的系统重建了开发环境. 开发人员说需要挂了的那台 Window ...

  6. centos7 yum搭建lnmp环境及配置wordpress超详细教程

    yum安装lnmp环境是最方便,最快捷的一种方法.源码编译安装需要花费大量的人类时间,当然源码编译可以个性化配置一些其它功能.目前来说,yum安装基本满足我们搭建web服务器的需求. 本文是我根据近期 ...

  7. Jvm内存泄漏

    内存泄漏和内存溢出的关系 内存泄露:指程序中动态分配内存给一些临时对象,但是对象不会被GC所回收,它始终占用内存.即被分配的对象可达但已无用. 内存溢出:指程序运行过程中无法申请到足够的内存而导致的一 ...

  8. Python 命令行之旅 —— 深入 argparse (一)

    作者:HelloGitHub-Prodesire HelloGitHub 的<讲解开源项目>系列,项目地址:https://github.com/HelloGitHub-Team/Arti ...

  9. springboot的log4j配置与logback配置

    log4j配置的依赖 <!-- 删除pom.xml文件中所有对日志jar包的引用--> <dependency> <groupId>org.springframew ...

  10. 八皇后非递归(仅使用一个数组且可扩展为N皇后问题)

    </pre><pre name="code" class="cpp">/* Theme:八皇后(非递归) Coder:秒针的声音 Tim ...