There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:

  • (1) Every node is either red or black.
  • (2) The root is black.
  • (3) Every leaf (NULL) is black.
  • (4) If a node is red, then both its children are black.
  • (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.

Figure 1 Figure 2 Figure 3

For each given binary search tree, you are supposed to tell if it is a legal red-black tree.

Input Specification:

Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.

Output Specification:

For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.

Sample Input:

3
9
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17

Sample Output:

Yes
No
No
【注意,不用判断是不是平衡二叉树,因为红黑树不是严格的平衡二叉树】
分析:判断以下几点:
1.根结点是否为黑色 
2.如果一个结点是红色,它的孩子节点是否都为黑色 
3.从任意结点到叶子结点的路径中,黑色结点的个数是否相同
所以分为以下几步:
0. 根据先序建立一棵树,用链表表示
1. 判断根结点(题目所给先序的第一个点即根结点)是否是黑色
2. 根据建立的树,从根结点开始遍历,如果当前结点是红色,判断它的孩子节点是否为黑色,递归返回结果
3. 从根节点开始,递归遍历,检查每个结点的左子树的高度和右子树的高度(这里的高度指黑色结点的个数),比较左右孩子高度是否相等,递归返回结果
 #include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
struct Node
{
int val;
Node *l, *r;
Node(int a) :val(a), l(nullptr), r(nullptr) {}
};
int n, m;
int getHigh(Node *root)//是指黑节点个数哦
{
if (root == nullptr)
return ;
int ln = getHigh(root->l);
int rn = getHigh(root->r);
return root->val > ? max(ln, rn) + : max(ln, rn);//计算黑节点个数
}
Node *Insert(Node *root, int x)
{
if (root == nullptr)
root = new Node(x);
else if (abs(x) < abs(root->val))
root->l = Insert(root->l, x);
else
root->r = Insert(root->r, x);
return root;
}
bool redNode(Node *root)
{
if (root == nullptr)
return true;
if (root->val < )//红节点孩子一定要是黑节点
if (root->l != nullptr && root->l->val < ||
root->r != nullptr && root->r->val < )
return false;
return redNode(root->l) && redNode(root->r);
}
bool balanceTree(Node *root)
{
if (root == nullptr) return true;
if (getHigh(root->l) != getHigh(root->r))return false;//黑节点个数不同
return balanceTree(root->l) && balanceTree(root->r);
}
int main()
{
int n, m;
cin >> n;
while (n--)
{
cin >> m;
vector<int>v(m);
Node *root = nullptr;
for (int i = ; i < m; ++i)
{
cin >> v[i];
root = Insert(root, v[i]);
}
if (v[] >= && balanceTree(root) && redNode(root))
cout << "Yes" << endl;
else
cout << "No" << endl;
}
return ;
}

PAT甲级——A1135 Is It A Red-Black Tree 【30】的更多相关文章

  1. 【PAT甲级】1099 Build A Binary Search Tree (30 分)

    题意: 输入一个正整数N(<=100),接着输入N行每行包括0~N-1结点的左右子结点,接着输入一行N个数表示数的结点值.输出这颗二叉排序树的层次遍历. AAAAAccepted code: # ...

  2. PAT甲级1123. Is It a Complete AVL Tree

    PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...

  3. PAT A1135 Is It A Red Black Tree

    判断一棵树是否是红黑树,按题给条件建树,dfs判断即可~ #include<bits/stdc++.h> using namespace std; ; struct node { int ...

  4. 【PAT 甲级】1151 LCA in a Binary Tree (30 分)

    题目描述 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has bo ...

  5. PAT甲级1123 Is It a Complete AVL Tree【AVL树】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...

  6. PAT 甲级 1043 Is It a Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...

  7. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  8. PAT 甲级 1043 Is It a Binary Search Tree (25 分)(链表建树前序后序遍历)*不会用链表建树 *看不懂题

    1043 Is It a Binary Search Tree (25 分)   A Binary Search Tree (BST) is recursively defined as a bina ...

  9. PAT甲级——A1123 Is It a Complete AVL Tree【30】

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

随机推荐

  1. 多台服务器-SSH免密登录设置

    在4台服务器-SSH免密登录设置,如以下4台服务器 master1 node001 node002 node003 我想在master1对4台服务器进行拉取或者分发任务或者是集群服务器的批量操作,但是 ...

  2. 转载-------- JSON 与 对象 、集合 之间的转换 JSON字符串和java对象的互转【json-lib】

    转载--*--*---- 在开发过程中,经常需要和别的系统交换数据,数据交换的格式有XML.JSON等,JSON作为一个轻量级的数据格式比xml效率要高,XML需要很多的标签,这无疑占据了网络流量,J ...

  3. 解决MySQL登录密码正确却提示错误-1045的方法

    MySQL密码正确却无法本地登录-1045 Access denied for user 'root'@'localhost' (using password:YES MySQL密码正确却无法本地登录 ...

  4. 使用multiprocessing模块创建进程

    #_author:来童星#date:2019/12/17from multiprocessing import Processimport timeimport os#两个子进程将会调用的两个方法de ...

  5. JavaWeb学习篇之----Session&&Cookie

    今天继续来看看JavaWeb的相关知识,这篇文章主要来讲一下Session和Cookie的相关知识,首先我们来看一下Cookie的相关知识: 一.Cookie 简介: Cookie是客户端技术,服务器 ...

  6. 移动Windows开始按钮到任务栏中的任何位置

    uses CommCtrl; procedure TForm1.Button1Click(Sender: TObject); var vHandle: THandle; vCount: Integer ...

  7. 虚拟IP---Linux下一个网卡配置多个IP

    转:http://blog.csdn.net/turkeyzhou/article/details/16971225 Linux下配置网卡ip别名何谓ip别名?用windows的话说,就是为一个网卡配 ...

  8. detours学习

    最近学习detours3.0,总结下学习过程,给后来学习者一点参考,也便于自己以后复习 首先应该知道detours可以干什么,学习之前最好看一下detours文档,这个文档很简单,只有4篇文章,相对比 ...

  9. Devstack单节点环境实战配置

    本文为minxihou的翻译文章,转载请注明出处Bob Hou: http://blog.csdn.net/minxihou JmilkFan:minxihou的技术博文方向是 算法&Open ...

  10. RTC, Real Time Clock

    配置 写入RTC_PRL, RTC_CNT, RTC_ALR寄存器时,需要先进入配置模式,通过把RTC_CRL寄存器的CNF位置一. 另外,在每次配置一个寄存器时必须等待上一次配置完成,可以通过检测R ...