Normalization

Normalization refers to rescaling real valued numeric attributes into the range 0 and 1. It is useful to scale the input attributes for a model that relies on the magnitude of values, such as distance measures used in k-nearest neighbors and in the preparation of coefficients in regression.

normalization 是将数据的每个样本(向量)变换为单位范数的向量,各样本之间是相互独立的.其实际上,是对向量中的每个分量值除以正规化因子.常用的正规化因子有 L1, L2 和 Max.假设,对长度为 n 的向量,其正规化因子 z 的计算公式,如下所示:

注意:Max 与无穷范数  不同,无穷范数 是需要先对向量的所有分量取绝对值,然后取其中的最大值;而 Max 是向量中的最大分量值,不需要取绝对值的操作.

补充:一阶范数也称为曼哈顿距离(Manhanttan distance)或街区距离;二阶范数也称为欧式距离(Euclidean distance)

#!/usr/bin/env python
# -*- coding: utf8 -*-
# author: klchang
# Use sklearn.preprocessing.Normalizer class to normalize data.
from __future__ import print_function
import numpy as np
from sklearn.preprocessing import Normalizer x = np.array([1, 2, 3, 4], dtype='float32').reshape(1,-1) print("Before normalization: ", x) options = ['l1', 'l2', 'max']
for opt in options:
norm_x = Normalizer(norm=opt).fit_transform(x)
print("After %s normalization: " % opt.capitalize(), norm_x)
#!/usr/bin/env python
# -*- coding: utf8 -*-
# author: klchang
# Use sklearn.preprocessing.normalize function to normalize data. from __future__ import print_function
import numpy as np
from sklearn.preprocessing import normalize x = np.array([1, 2, 3, 4], dtype='float32').reshape(1,-1) print("Before normalization: ", x) options = ['l1', 'l2', 'max']
for opt in options:
norm_x = normalize(x, norm=opt)
print("After %s normalization: " % opt.capitalize(), norm_x)

Standardizaton

Standardization refers to shifting the distribution of each attribute to have a mean of zero and a standard deviation of one (unit variance). It is useful to standardize attributes for a model that relies on the distribution of attributes such as Gaussian processes.

# Standardize the data attributes for the Iris dataset.
from sklearn.datasets import load_iris
from sklearn import preprocessing
# load the Iris dataset
iris = load_iris()
print(iris.data.shape)
# separate the data and target attributes
X = iris.data
y = iris.target
# standardize the data attributes
standardized_X = preprocessing.scale(X)

from 机器学习里的黑色艺术:normalization, standardization, regularization;

第一部分:大的层面上讲

1. normalization一般是把数据限定在需要的范围,比如一般都是【0,1】,从而消除了数据量纲对建模的影响。standardization 一般是指将数据正态化,使平均值0方差为1. 因此normalization和standardization 是针对数据而言的,消除一些数值差异带来的特种重要性偏见。经过归一化的数据,能加快训练速度,促进算法的收敛。

2.而regularization是在cost function里面加惩罚项,增加建模的模糊性,从而把捕捉到的趋势从局部细微趋势,调整到整体大概趋势。虽然一定程度上的放宽了建模要求,但是能有效防止over-fitting的问题(如图,来源于网上),增加模型准确性。因此,regularization是针对模型而言。

这三个term说的是不同的事情。

第二部分:方法

总结下normalization, standardization,和regularization的方法。

Normalization 和 Standardization

(1).最大最小值normalization: x'=(x-min)/(max-min). 这种方法的本质还是线性变换,简单直接。缺点就是新数据的加入,可能会因数值范围的扩大需要重新regularization。

(2). 对数归一化:x'=log10(x)/log10(xmax)或者log10(x)。推荐第一种,除以最大值,这样使数据落到【0,1】区间

(3).反正切归一化。x'=2atan(x)/pi。能把数据投影到【-1,1】区间。

(4).zero mean normalization归一化,也是standardization. x'=(x-mean)/std.

有无normalization,模型的学习曲线是不一样的,甚至会收敛结果不一样。比如在深度学习中,batch normalization有无,学习曲线对比是这样的:图一 蓝色线有batch normalization (BN),黑色虚线是没有BN. 黑色线放大,是图二的样子,蓝色线放大是图三的样子。reference:Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, Sergey Ioffe.

Regularization 方法

一般形式,应该是 min  , R是regularization term。一般方法有

  1. L1 regularization: 对整个绝对值只和进行惩罚。
  2. L2 regularization:对系数平方和进行惩罚。
  3. Elastic-net 混合regularization。
 

from Differences between normalization, standardization and regularization;

Normalization

Normalization usually rescales features to [0,1][0,1].1 That is,

x′=x−min(x)max(x)−min(x)x′=x−min(x)max(x)−min(x)

It will be useful when we are sure enough that there are no anomalies (i.e. outliers) with extremely large or small values. For example, in a recommender system, the ratings made by users are limited to a small finite set like {1,2,3,4,5}{1,2,3,4,5}.

In some situations, we may prefer to map data to a range like [−1,1][−1,1] with zero-mean.2 Then we should choose mean normalization.3

x′=x−mean(x)max(x)−min(x)x′=x−mean(x)max(x)−min(x)

In this way, it will be more convenient for us to use other techniques like matrix factorization.

Standardization

Standardization is widely used as a preprocessing step in many learning algorithms to rescale the features to zero-mean and unit-variance.3

x′=x−μσx′=x−μσ

Regularization

Different from the feature scaling techniques mentioned above, regularization is intended to solve the overfitting problem. By adding an extra part增加惩罚项 to the loss function, the parameters in learning algorithms are more likely to converge to smaller values, which can significantly reduce overfitting.

There are mainly two basic types of regularization: L1-norm (lasso) and L2-norm (ridge regression).4

L1-norm5

The original loss function is denoted by f(x)f(x), and the new one is F(x)F(x).

F(x)=f(x)+λ∥x∥1F(x)=f(x)+λ‖x‖1

where

∥x∥p=p ⎷n∑i=1|xi|p‖x‖p=∑i=1n|xi|pp

L1 regularization is better when we want to train a sparse model, since the absolute value function is not differentiable at 0.

L2-norm56

F(x)=f(x)+λ∥x∥22F(x)=f(x)+λ‖x‖22

L2 regularization is preferred in ill-posed problems for smoothing.

Here is a comparison between L1 and L2 regularizations.

From https://en.wikipedia.org/wiki/Regularization_(mathematics)

References

  1. https://stats.stackexchange.com/a/10298 

  2. https://www.quora.com/What-is-the-difference-between-normalization-standardization-and-regularization-for-data/answer/Enzo-Tagliazucchi?share=c48b6752&srid=51VPj 

  3. https://en.wikipedia.org/wiki/Feature_scaling  2

  4. https://en.wikipedia.org/wiki/Regularization_%28mathematics%29 

  5. https://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization-How-does-it-solve-the-problem-of-overfitting-Which-regularizer-to-use-and-when/answer/Kenneth-Tran?share=400c336d&srid=51VPj  2

  6. https://en.wikipedia.org/wiki/Ridge_regression 

normalization, standardization and regularization的更多相关文章

  1. zz先睹为快:神经网络顶会ICLR 2019论文热点分析

    先睹为快:神经网络顶会ICLR 2019论文热点分析 - lqfarmer的文章 - 知乎 https://zhuanlan.zhihu.com/p/53011934 作者:lqfarmer链接:ht ...

  2. 数据预处理中归一化(Normalization)与损失函数中正则化(Regularization)解惑

    背景:数据挖掘/机器学习中的术语较多,而且我的知识有限.之前一直疑惑正则这个概念.所以写了篇博文梳理下 摘要: 1.正则化(Regularization) 1.1 正则化的目的 1.2 正则化的L1范 ...

  3. 学习笔记57—归一化 (Normalization)、标准化 (Standardization)和中心化/零均值化 (Zero-centered)

    1 概念   归一化:1)把数据变成(0,1)或者(1,1)之间的小数.主要是为了数据处理方便提出来的,把数据映射到0-1范围之内处理,更加便捷快速.2)把有量纲表达式变成无量纲表达式,便于不同单位或 ...

  4. 归一化 (Normalization)、标准化 (Standardization)和中心化/零均值化 (Zero-centered)

    博主学习的源头,感谢!https://www.jianshu.com/p/95a8f035c86c 归一化 (Normalization).标准化 (Standardization)和中心化/零均值化 ...

  5. 【转】Standardization(标准化)和Normalization(归一化)的区别

    Standardization(标准化)和Normalization(归一化)的区别  https://blog.csdn.net/Dhuang159/article/details/83627146 ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week3, Hyperparameter tuning, Batch Normalization and Programming Frameworks

    Tuning process 下图中的需要tune的parameter的先后顺序, 红色>黄色>紫色,其他基本不会tune. 先讲到怎么选hyperparameter, 需要随机选取(sa ...

  7. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hyperparameter tuning, Batch Normalization and Programming Frameworks) —— 2.Programming assignments

    Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Ten ...

  8. 归一化(Normalization)和标准化(Standardization)

    归一化和标准化是机器学习和深度学习中经常使用两种feature scaling的方式,这里主要讲述以下这两种feature scaling的方式如何计算,以及一般在什么情况下使用. 归一化的计算方式: ...

  9. 归一化方法 Normalization Method

    1. 概要 数据预处理在众多深度学习算法中都起着重要作用,实际情况中,将数据做归一化和白化处理后,很多算法能够发挥最佳效果.然而除非对这些算法有丰富的使用经验,否则预处理的精确参数并非显而易见. 2. ...

随机推荐

  1. C# WPF聊天界面(3/3)

    微信公众号:Dotnet9,网站:Dotnet9,问题或建议:请网站留言, 如果对您有所帮助:欢迎赞赏. C# WPF聊天界面(3/3) 阅读导航 本文背景 代码实现 本文参考 1.本文背景 系列文章 ...

  2. 【React Native】集成声网Agora语音通讯

    前言: 公司的产品是一款基于社交的内容聊天软件,需要集成语音通讯功能,在写iOS原生项目时,用到的就是Agora SDK,现在写React Native也直接采用了Agora的库. 集成iOS.And ...

  3. Qt获取当前屏幕大小

    1.头文件 #include<QScreen> 2.代码 QScreen *screen = QGuiApplication::primaryScreen (); QRect screen ...

  4. Uva1635 二项式递推+质因子分解+整数因子分解

    题意: 给定n个数a1,a2····an,依次求出相邻两个数值和,将得到一个新数列,重复上述操作,最后结果将变为一个数,问这个数除以m的余数与那些数无关? 例如n=3,m=2时,第一次得到a1+a2, ...

  5. Java不同单词个数统计

    描述 编写一个程序,输入一个句子,然后统计出这个句子当中不同的单词个数.例如:对于句子“one little two little three little boys”,总共有5个不同的单词:one, ...

  6. Spring Boot源码(二):SPI去除web.xml

    SPI广泛用于dubbo,spring boot,spring cloud alibaba等 关于SPI,可见SPI-Service Provider Interface 继续上篇文章 上面三句代码的 ...

  7. 剑指offer-基础练习-增删节点-链表

    /* 链表基本操作: 插入节点和删除节点 */ /* 思路: 使用指向链表的头指针,这样在新插入节点后,头指针不会改变 */ struct ListNode{ int value; ListNode* ...

  8. liner-classifiers-SVM

    1支持向量机 参考看了这篇文章你还不懂SVM你就来打我 第一遍看完确实有想打死作者的冲动,但是多看几遍之后,真香~ [SVM---这可能是最直白的推导了] 个人觉得这篇文章讲的很清楚,条理清晰,数学推 ...

  9. ASP.NET常用内置对象(二)Response

    response翻译为中文:响应. 将数据作为请求的结果从服务器发送到客户浏览器中,并提供有关响应的消息.它可用来在页面中输出数据,在页面中跳转,还可以传递各个页面的参数. Response对象是Sy ...

  10. Socket之TCP-IP

    通常的TCP/IP流程如下: TCP/IP的通讯更像是打电话,连接上通了确认是自己拨叫的用户之后才能进行正常通话,更加安全合理. Qt中的TCP/IP流程如下: Qt中流程和普通的思路一样,只是封装成 ...