PP:Classification of Time-Series Images Using Deep Convolutional Neural Networks
The 10th international conference on machine vision; C类
Methodology: 非主流方法
2 stages:
1. convert time series data to recurrence plot. 数值*时间长度----------> 时间长度*时间长度.
2. fed into CNN model.
潜在问题:
1. 由time series data 转化成为 recurrence plot是否丢失了信息,丢失了哪些信息------未知
2. cnn分类效果是否比别的好. 文章在在20个数据库上进行了测试,试验结果并没有很明显的提高.

Supplementary knowledge:
PP:Classification of Time-Series Images Using Deep Convolutional Neural Networks的更多相关文章
- 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...
- ImageNet Classification with Deep Convolutional Neural Networks(译文)转载
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 中文版 ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...
- Image Scaling using Deep Convolutional Neural Networks
Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in P ...
- Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...
- Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 ...
- 深度卷积神经网络用于图像缩放Image Scaling using Deep Convolutional Neural Networks
This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning base ...
- [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)
这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...
随机推荐
- 牛客练习赛56 B 小琛和他的学校
题目链接:https://ac.nowcoder.com/acm/contest/3566/B 思路:一条路可把图分为左右两部分. l_ci, l_peo, r_ci, r_peo, w 分别为左边城 ...
- 剑指offer-面试题5-替换空格-字符串
/* 题目: 请实现一个函数,把字符串中的每个空格替换成'%20'. 例如输入“We are happy",则输出 ”We%20are%happy". */ /* 结题思路: 考虑 ...
- UVA1635-唯一分解定理的基本应用2
原题:https://vjudge.net/problem/UVA-1635 这是一个极其典型的“从素因子角度出发”的题目,下面是我的代码: #include<iostream> #inc ...
- vulnhub靶机之DC6实战(wordpress+nmap提权)
0x00环境 dc6靶机下载地址:https://download.vulnhub.com/dc/DC-6.zip dc6以nat模式在vmware上打开 kali2019以nat模式启动,ip地址为 ...
- mybatis中用到的9种设计模式
1.Builder模式:例如SqlSessionFactoryBuilder.XMLConfigBuilder.XMLMapperBuilder.XMLStatementBuilder.CacheBu ...
- mysql 表分区操作
//不支持动态创建分区CREATE TABLE `rpt_exp_event_bucket_creative_d_across` ( `bucket_id` VARCHAR(200) NOT NULL ...
- python报错bs4.FeatureNotFound: Couldn't find a tree builder with the features you requested: lxml.
qpython运行 原代码: soup = BeautifulSoup(r.text,'lxml') 报错:bs4.FeatureNotFound: Couldn't find a tree b ...
- C#序列化与反序列化学习笔记
本笔记摘抄自:https://www.cnblogs.com/maitian-lf/p/3670570.html,记录一下学习过程以备后续查用. 序列化是把一个内存中的对象的信息转化成一个可以持久化保 ...
- Mybatis常见面试题汇总
Mybatis常见面试题汇总 最近在复习整理Mybatis的相关知识,针对面试中的典型问题,结合相关书籍和网上相关帖子,做如下整理. ================================= ...
- Codeforces Round #624 (Div. 3) F. Moving Points 题解
第一次写博客 ,请多指教! 翻了翻前面的题解发现都是用树状数组来做,这里更新一个 线段树+离散化的做法: 其实这道题是没有必要用线段树的,树状数组就能够解决.但是个人感觉把线段树用熟了会比树状数组更有 ...