python常见函数积累
shape()
返回数组或者数据框有多少行或者多少列
import numpy as np
x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]])
#输出数组的行和列数
print x.shape #结果: (4, 3)
#只输出行数
print x.shape[0] #结果: 4
#只输出列数
print x.shape[1] #结果: 3
因此可以用来遍历行或者列
#计算每列的均值
ex=np.array(np.mean(x[:,i]) for i in range(x.shape[1]))
reshpae()
reshape()是数组array中的方法,作用是将数据重新组织
a = np.array([[1,2,3,4],[5,6,7,8]]) #二维数组
print(a.shape[0]) #值为2,最外层矩阵有2个元素,2个元素还是矩阵。
print(a.shape[1]) #值为4,内层矩阵有4个元素。
b= np.array([1,2,3,4,5,6,7,8])
b.reshape(2,4)
print(b)
#array([[1,2,3,4],
[5,6,7,8]])
pd.Dataframe.columns
返回数据框的列名
pd.Dataframe.columns.values
返回数据框的的列值
[[]]
我之前想提取两列,哈哈,想半天,最后看了一个同学给的demo
直接pd.[["列名","列名"]]
还是见的太少了
_
就是常见的命名规则,
这里指代损失函数
# Create centroids with kmeans for 2 clusters
cluster_centers,_ = kmeans(fifa[scaled_features], 2)
unique()
去重函数,默认是行去重
[]
# Leave this list as is
number_cols = ['HP', 'Attack', 'Defense']
# Remove the feature without variance from this list
non_number_cols = ['Name', 'Type', 'Legendary']
# Create a new dataframe by subselecting the chosen features
df_selected = pokemon_df[number_cols + non_number_cols]
<script.py> output:
HP Attack Defense Name Type Legendary
0 45 49 49 Bulbasaur Grass False
1 60 62 63 Ivysaur Grass False
2 80 82 83 Venusaur Grass False
3 80 100 123 VenusaurMega Venusaur Grass False
4 39 52 43 Charmander Fire False
比如这个栗子,可以用来提取子数据框
format
print("{} rows in test set vs. {} in training set. {} Features.".format(X_test.shape[0], X_train.shape[0], X_test.shape[1]))
输出保留一位百分比小数的结果
print("{0:.1%} accuracy on test set.".format(acc))
isnull()
判断是否有缺失值
返回bool
.sum()
除了求和之外还有判断个数此时等同于count
pd.isnull.sum()
.dtypes
DataFrame.dtypes
返回DataFrame中的dtypes
这将返回一个Series,其中包含每列的数据类型。结果的索引是原始DataFrame的列。具有混合类型的列与objectdtype 一起存储
1.type() 返回参数的数据类型
2.dtype 返回数组中元素的数据类型
3.astype() 对数据类型进行转换
value_counts()
value_counts()是一种查看表格某列中有多少个不同值的快捷方法,并计算每个不同值有在该列中有多少重复值。
所以就是统计
In [3]: volunteer["category_desc"].value_counts()
Out[3]:
Strengthening Communities 307
Helping Neighbors in Need 119
Education 92
Health 52
Environment 32
Emergency Preparedness 15
Name: category_desc, dtype: int64
apply
我先放个栗子,后面继续补充这个函数,感觉做一些简单的处理很好用
# Create a list of the columns to average
run_columns = ["run1", "run2", "run3", "run4", "run5"]
# Use apply to create a mean column
running_times_5k["mean"] = running_times_5k.apply(lambda row: row[run_columns].mean(), axis=1)
# Take a look at the results
print(running_times_5k)
script.py> output:
name run1 run2 run3 run4 run5 mean
0 Sue 20.1 18.5 19.6 20.3 18.3 19.36
1 Mark 16.5 17.1 16.9 17.6 17.3 17.08
2 Sean 23.5 25.1 25.2 24.6 23.9 24.46
3 Erin 21.7 21.1 20.9 22.1 22.2 21.60
4 Jenny 25.8 27.1 26.1 26.7 26.9 26.52
5 Russell 30.9 29.6 31.4 30.4 29.9 30.44
python常见函数积累的更多相关文章
- python常见函数以及模块调用
1.常用函数区别 print: 在python3.0中print是函数,这意味着需要编写print(A )而不是print A str()和repr()的区别 >>>print st ...
- python爬虫积累(一)--------selenium+python+PhantomJS的使用(转)
阅读目录 一.Selenium介绍 二.爬虫为什么要用selenium? 三.PhantomJS介绍 四.PhantomJS安装 五.操作实战 六.在此推荐虫师博客的学习资料 selenium + p ...
- Python学习积累:使用help();打印多个变量;fileno()
1.使用篇: 1.1如何从help()退出: 直接回车即可! 2.技能篇: 2.1 如何一次性打印多个变量? 多个变量中间使用逗号隔开,且引用变量为%(变量1,变量2,变量3), 2.2fileno( ...
- python爬虫积累(一)--------selenium+python+PhantomJS的使用
最近按公司要求,爬取相关网站时,发现没有找到js包的地址,我就采用selenium来爬取信息,相关实战链接:python爬虫实战(一)--------中国作物种质信息网 一.Selenium介绍 Se ...
- python知识积累
1. 安装requirements.txt依赖: pip install -r requirements.txt 生成requirements.txt文件: pip freeze > requi ...
- Python 自学积累(二)
1. onfigParser 模块用于操作配置文件 注:Parser汉译为“解析”之意. 配置文件的格式与windows ini文件类似,可以包含一个或多个节(section),每个节可以有多个参数( ...
- Python 自学积累(一)
1. 当"print os.path.dirname(__file__)"所在脚本是以完整路径被运行的, 那么将输出该脚本所在的完整路径,比如: python d:/pythonS ...
- python常见函数运用【一】
1.Python hasattr() 函数 描述hasattr() 函数用于判断对象是否包含对应的属性. 语法 hasattr 语法: hasattr(object, name)参数object -- ...
- Python 日常积累
包管理 >from ... import ... 的用法和直接import的区别 直接使用import时,如果需要使用到导入模块内的属性和方法,必须使用模块名.属性和模块名.方法的方式进行调用 ...
随机推荐
- num11---桥接模式
比如手机类,有各种类型,比如翻盖.平板等,每一类下又有各个品牌,比如华为,如果新增一个类型,比如折叠屏,或者新增一个手机品牌,苹果,那么会导致 扩展性问题. 这种情况下,应该使用桥接模式. 代码: 创 ...
- python练习——第4题
原GitHub地址:https://github.com/Yixiaohan/show-me-the-code 题目:任一个英文的纯文本文件,统计其中的单词出现的个数. 代码: import coll ...
- Django 搭建
1.安装python 2.pip 安装 Django 2.1.3 是版本号 命令:pip install Django==2.1.3 3.数据库驱动: mysql 数据库配置文档: 下载 whl 文 ...
- xdebug插件攻击
title: xdebug插件攻击 date: 2017-09-30 17:08:38 tags: 前一阵突然看到一个有关于xdebug的一个攻击面,不得不说这个想法还是很有意思的.自己搭环境记录一下 ...
- 学习CSS之用CSS实现时钟效果
一.机械时钟 1.最终效果 用 CSS 绘制的机械时钟效果如下: HTML 中代码结构为: <body> <div class="clock"> ...
- java sql语句 like%?%报错的问题
在数据库中不会报错,但用java调用时确保错. SQL语句: SELECT pageId,`name`,text FROM Page WHERE `name` LIKE CONCAT('%',?,'% ...
- form表单 post 请求打开新页面
function postOpenWindow(URL, PARAMS, target) { if(target == null) target = "_blank"; var t ...
- mysql5.5编译安装
MySQL是一个关系型数据库管理系统 ,由瑞典MySQL AB公司开发,目前属于Oracle 公司.MySQL分为社区版和商业版,由于其体积小.速度快.总体拥有成本低,尤其是开放源码 这一特点,一般中 ...
- Linux运维---磁盘存储-2. RAID
随着单块磁盘在数据安全.性能.容量上呈现出的局限,磁盘阵列(Redundant Arrays of Inexpensive/Independent Disks,RAID)出现了,RAID把多块独立的磁 ...
- 多线程笔记 - Master-Worker
多线程的 Master-Worker 从字面上也是可以理解的. Master 相当于领导, 一个就够了, 如果是多个, 那么听谁的, 是个大问题. Master负责指派任务给 Worker. 然后对每 ...