import numpy as np
import matplotlib.pyplot as plt fig = plt.figure()
fig.subplots_adjust(bottom=0.025, left=0.025, top = 0.975, right=0.975) plt.subplot(2,1,1)
plt.xticks([]), plt.yticks([]) plt.subplot(2,3,4)
plt.xticks([]), plt.yticks([]) plt.subplot(2,3,5)
plt.xticks([]), plt.yticks([]) plt.subplot(2,3,6)
plt.xticks([]), plt.yticks([]) # plt.savefig('../figures/multiplot_ex.png',dpi=48)
plt.show()

import numpy as np
import matplotlib.pyplot as plt n = 20
Z = np.ones(n)
Z[-1] *= 2 plt.axes([0.025, 0.025, 0.95, 0.95]) plt.pie(Z, explode=Z*.05, colors=['%f' % (i/float(n)) for i in range(n)],
wedgeprops={"linewidth": 1, "edgecolor": "black"})
plt.gca().set_aspect('equal')
plt.xticks([]), plt.yticks([]) # savefig('../figures/pie_ex.png',dpi=48)
plt.show()

import numpy as np
import matplotlib.pyplot as plt n = 256
X = np.linspace(-np.pi,np.pi,n,endpoint=True)
Y = np.sin(2*X) plt.axes([0.025,0.025,0.95,0.95]) plt.plot (X, Y+1, color='blue', alpha=1.00)
plt.fill_between(X, 1, Y+1, color='blue', alpha=.25) plt.plot (X, Y-1, color='blue', alpha=1.00)
plt.fill_between(X, -1, Y-1, (Y-1) > -1, color='blue', alpha=.25)
plt.fill_between(X, -1, Y-1, (Y-1) < -1, color='red', alpha=.25) plt.xlim(-np.pi,np.pi), plt.xticks([])
plt.ylim(-2.5,2.5), plt.yticks([])
# savefig('../figures/plot_ex.png',dpi=48)
plt.show()

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.cm.hot)
ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.cm.hot)
ax.set_zlim(-2,2) # savefig('../figures/plot3d_ex.png',dpi=48)
plt.show()

from pylab import *
from mpl_toolkits.mplot3d import axes3d ax = gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
cset = ax.contourf(X, Y, Z)
ax.clabel(cset, fontsize=9, inline=1) plt.xticks([]), plt.yticks([]),
ax.set_zticks([]) ax.text2D(-0.05, 1.05, " 3D plots \n\n",
horizontalalignment='left',
verticalalignment='top',
family='Lint McCree Intl BB',
size='x-large',
bbox=dict(facecolor='white', alpha=1.0, width=350,height=60),
transform = gca().transAxes) ax.text2D(-0.05, .975, " Plot 2D or 3D data",
horizontalalignment='left',
verticalalignment='top',
family='Lint McCree Intl BB',
size='medium',
transform = gca().transAxes) plt.show()

import numpy as np
import matplotlib.pyplot as plt ax = plt.axes([0.025,0.025,0.95,0.95], polar=True) N = 20
theta = np.arange(0.0, 2*np.pi, 2*np.pi/N)
radii = 10*np.random.rand(N)
width = np.pi/4*np.random.rand(N)
bars = plt.bar(theta, radii, width=width, bottom=0.0) for r,bar in zip(radii, bars):
bar.set_facecolor( plt.cm.jet(r/10.))
bar.set_alpha(0.5) ax.set_xticklabels([])
ax.set_yticklabels([])
# savefig('../figures/polar_ex.png',dpi=48)
plt.show()

import numpy as np
import matplotlib.pyplot as plt n = 8
X,Y = np.mgrid[0:n,0:n]
T = np.arctan2(Y-n/2.0, X-n/2.0)
R = 10+np.sqrt((Y-n/2.0)**2+(X-n/2.0)**2)
U,V = R*np.cos(T), R*np.sin(T) plt.axes([0.025,0.025,0.95,0.95])
plt.quiver(X,Y,U,V,R, alpha=.5)
plt.quiver(X,Y,U,V, edgecolor='k', facecolor='None', linewidth=.5) plt.xlim(-1,n), plt.xticks([])
plt.ylim(-1,n), plt.yticks([]) # savefig('../figures/quiver_ex.png',dpi=48)
plt.show()

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation # No toolbar
matplotlib.rcParams['toolbar'] = 'None' # New figure with white background
fig = plt.figure(figsize=(6,6), facecolor='white') # New axis over the whole figureand a 1:1 aspect ratio
# ax = fig.add_axes([0,0,1,1], frameon=False, aspect=1)
ax = fig.add_axes([0.005,0.005,0.990,0.990], frameon=True, aspect=1) # Number of ring
n = 50
size_min = 50
size_max = 50*50 # Ring position
P = np.random.uniform(0,1,(n,2)) # Ring colors
C = np.ones((n,4)) * (0,0,0,1) # Alpha color channel goes from 0 (transparent) to 1 (opaque)
C[:,3] = np.linspace(0,1,n) # Ring sizes
S = np.linspace(size_min, size_max, n) # Scatter plot
scat = ax.scatter(P[:,0], P[:,1], s=S, lw = 0.5,
edgecolors = C, facecolors='None') # Ensure limits are [0,1] and remove ticks
ax.set_xlim(0,1), ax.set_xticks([])
ax.set_ylim(0,1), ax.set_yticks([]) def update(frame):
global P, C, S # Every ring is made more transparent
C[:,3] = np.maximum(0, C[:,3] - 1.0/n) # Each ring is made larger
S += (size_max - size_min) / n # Reset ring specific ring (relative to frame number)
i = frame % 50
P[i] = np.random.uniform(0,1,2)
S[i] = size_min
C[i,3] = 1 # Update scatter object
scat.set_edgecolors(C)
scat.set_sizes(S)
scat.set_offsets(P)
return scat, animation = FuncAnimation(fig, update, interval=10)
# animation.save('../figures/rain.gif', writer='imagemagick', fps=30, dpi=72)
plt.show()

import numpy as np
import matplotlib.pyplot as plt # New figure with white background
fig = plt.figure(figsize=(6,6), facecolor='white') # New axis over the whole figureand a 1:1 aspect ratio
ax = fig.add_axes([0.005,0.005,.99,.99], frameon=True, aspect=1) # Number of ring
n = 50
size_min = 50
size_max = 50*50 # Ring position
P = np.random.uniform(0,1,(n,2)) # Ring colors
C = np.ones((n,4)) * (0,0,0,1) # Alpha color channel goes from 0 (transparent) to 1 (opaque)
C[:,3] = np.linspace(0,1,n) # Ring sizes
S = np.linspace(size_min, size_max, n) # Scatter plot
scat = ax.scatter(P[:,0], P[:,1], s=S, lw = 0.5,
edgecolors = C, facecolors='None') # Ensure limits are [0,1] and remove ticks
ax.set_xlim(0,1), ax.set_xticks([])
ax.set_ylim(0,1), ax.set_yticks([]) # plt.savefig("../figures/rain-static.png",dpi=72)
plt.show()

import numpy as np
import matplotlib.pyplot as plt n = 1024
X = np.random.normal(0,1,n)
Y = np.random.normal(0,1,n)
T = np.arctan2(Y,X) plt.axes([0.025,0.025,0.95,0.95])
plt.scatter(X,Y, s=75, c=T, alpha=.5) plt.xlim(-1.5,1.5), plt.xticks([])
plt.ylim(-1.5,1.5), plt.yticks([])
# savefig('../figures/scatter_ex.png',dpi=48)
plt.show()

from pylab import *

size = 256,16
dpi = 72.0
figsize= size[0]/float(dpi),size[1]/float(dpi)
fig = figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
axes([0,0,1,1], frameon=False) plot(np.arange(4), np.ones(4), color="blue", linewidth=8, solid_capstyle = 'butt') plot(5+np.arange(4), np.ones(4), color="blue", linewidth=8, solid_capstyle = 'round') plot(10+np.arange(4), np.ones(4), color="blue", linewidth=8, solid_capstyle = 'projecting') xlim(0,14)
xticks([]),yticks([])
show()

from pylab import *

size = 256,16
dpi = 72.0
figsize= size[0]/float(dpi),size[1]/float(dpi)
fig = figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
axes([0,0,1,1], frameon=False) plot(np.arange(3), [0,1,0], color="blue", linewidth=8, solid_joinstyle = 'miter')
plot(4+np.arange(3), [0,1,0], color="blue", linewidth=8, solid_joinstyle = 'bevel')
plot(8+np.arange(3), [0,1,0], color="blue", linewidth=8, solid_joinstyle = 'round') xlim(0,12), ylim(-1,2)
xticks([]),yticks([])
show()

from pylab import *

subplot(2,2,1)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,1)',ha='center',va='center',size=20,alpha=.5) subplot(2,2,2)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,2)',ha='center',va='center',size=20,alpha=.5) subplot(2,2,3)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,3)',ha='center',va='center',size=20,alpha=.5) subplot(2,2,4)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,4)',ha='center',va='center',size=20,alpha=.5) # savefig('../figures/subplot-grid.png', dpi=64)
show()

from pylab import *

subplot(2,1,1)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,1,1)',ha='center',va='center',size=24,alpha=.5) subplot(2,1,2)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,1,2)',ha='center',va='center',size=24,alpha=.5) # plt.savefig('../figures/subplot-horizontal.png', dpi=64)
show()

from pylab import *

subplot(1,2,1)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,1)',ha='center',va='center',size=24,alpha=.5) subplot(1,2,2)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,2)',ha='center',va='center',size=24,alpha=.5) show()

import numpy as np
import matplotlib.pyplot as plt eqs = []
eqs.append((r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$"))
eqs.append((r"$\frac{d\rho}{d t} + \rho \vec{v}\cdot\nabla\vec{v} = -\nabla p + \mu\nabla^2 \vec{v} + \rho \vec{g}$"))
eqs.append((r"$\int_{-\infty}^\infty e^{-x^2}dx=\sqrt{\pi}$"))
eqs.append((r"$E = mc^2 = \sqrt{{m_0}^2c^4 + p^2c^2}$"))
eqs.append((r"$F_G = G\frac{m_1m_2}{r^2}$")) plt.axes([0.025,0.025,0.95,0.95]) for i in range(24):
index = np.random.randint(0,len(eqs))
eq = eqs[index]
size = np.random.uniform(12,32)
x,y = np.random.uniform(0,1,2)
alpha = np.random.uniform(0.25,.75)
plt.text(x, y, eq, ha='center', va='center', color="#11557c", alpha=alpha,
transform=plt.gca().transAxes, fontsize=size, clip_on=True) plt.xticks([]), plt.yticks([])
# savefig('../figures/text_ex.png',dpi=48)
plt.show()

import matplotlib
#matplotlib.use('Agg')
from pylab import * def tickline(): size = 512,32
dpi = 72.0
figsize= size[0]/float(dpi),size[1]/float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0) ax = axes([0.05, 0, 0.9, 1], frameon=False)
xlim(0,10), ylim(-1,1), yticks([])
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_minor_locator(MultipleLocator(0.1))
ax.plot(np.arange(11), np.zeros(11), color='none')
return ax ax = tickline()
ax.xaxis.set_major_locator(NullLocator()) ax = tickline()
ax.xaxis.set_major_locator(MultipleLocator(1.0)) ax = tickline()
ax.xaxis.set_major_locator(FixedLocator([0,2,8,9,10])) ax = tickline()
ax.xaxis.set_major_locator(IndexLocator(3,1)) ax = tickline()
ax.xaxis.set_major_locator(LinearLocator(5)) ax = tickline()
ax.xaxis.set_major_locator(LogLocator(2,[1.0])) ax = tickline()
ax.xaxis.set_major_locator(AutoLocator())

吴裕雄--天生自然Python Matplotlib库学习笔记:matplotlib绘图(2)的更多相关文章

  1. 吴裕雄--天生自然python Google深度学习框架:Tensorflow实现迁移学习

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  2. 吴裕雄--天生自然python Google深度学习框架:经典卷积神经网络模型

    import tensorflow as tf INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABEL ...

  3. 吴裕雄--天生自然python Google深度学习框架:图像识别与卷积神经网络

  4. 吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  5. 吴裕雄--天生自然python Google深度学习框架:深度学习与深层神经网络

  6. 吴裕雄--天生自然python Google深度学习框架:TensorFlow实现神经网络

    http://playground.tensorflow.org/

  7. 吴裕雄--天生自然python Google深度学习框架:Tensorflow基础应用

    import tensorflow as tf a = tf.constant([1.0, 2.0], name="a") b = tf.constant([2.0, 3.0], ...

  8. 吴裕雄--天生自然python Google深度学习框架:人工智能、深度学习与机器学习相互关系介绍

  9. 吴裕雄--天生自然 R语言开发学习:中级绘图(续二)

    #------------------------------------------------------------------------------------# # R in Action ...

  10. 吴裕雄--天生自然 R语言开发学习:中级绘图(续一)

    #------------------------------------------------------------------------------------# # R in Action ...

随机推荐

  1. zabbix监控规划及实施

    一.规划监控拓扑 二.主机分组 例:交换机.Nginx.Tomcat.MySQL 三.监控对象识别: 1.使用SNMP监控交换机 a.交换机开启snmp config -t snmp-server c ...

  2. 测试理论 - Test Double

    概述 简述 test double mock, fake 之类的东西 背景 最近在看 google 软件测试之道 妈的 13 年的老书了 书里有提到 mock, fake, stub 刚好, 我又不太 ...

  3. numpy rand函数的应用

    以后使用rand(), randint()等函数. 随机浮点类型数值(均匀分布) numpy.random.rand() 产生[0,1)内的浮点型随机数 numpy.random.rand(value ...

  4. FreeRTOS学习笔记3:内核控制及开启调度器

    内核控制函数API 应用层中不会用到taskYIELD() //任务切换.会自动切换当前就绪表里优先级最高的任务 临界区 //不能被打断的代码段任务中进入临界区任务中退出临界区中断服务进入临界区中断服 ...

  5. Bugku-CTF之本地包含( 60)

    Day36  

  6. LNMP调优

    1.编译安装nginx前修改: 在安装包目录下  vim src/core/nginx.h //#号不代表注释 #define nginx_version      1009009 //软件版本号 # ...

  7. Mongodb学习笔记(三)性能篇

    一.索引管理 MongoDB提供了多样性的索引支持,索引信息被保存在system.indexes中MongoDB中_id字段在创建的时候,默认已经建立了索引,这个索引比较特殊,并且不可以删除,不过Ca ...

  8. A task in a suit and a tie:paraphrase generation with semantic augmentation解读

    1.该算法核心:在seq2seq模型的编码器中增加语义的frame 和 roles 2.上图为算法整个流程: 1).首先输入一句话s,SLING会使用frame和role label注释输入语句s,然 ...

  9. 委托与事件--delegate&&event

    委托 访问修饰符 delegate 返回值 委托名(参数); public delegate void NoReturnNoPara(); public void NoReturnNoParaMeth ...

  10. 浅谈分治 —— 洛谷P1228 地毯填补问题 题解

    如果想看原题网址的话请点击这里:地毯填补问题 原题: 题目描述 相传在一个古老的阿拉伯国家里,有一座宫殿.宫殿里有个四四方方的格子迷宫,国王选择驸马的方法非常特殊,也非常简单:公主就站在其中一个方格子 ...