bzoj2839 集合计数

F.A.Qs | Home | Discuss | ProblemSet | Status | Ranklist | Contest | 入门OJ | ModifyUser | Logout | 捐赠本站 |
---|
2839: 集合计数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 854 Solved: 470
Description
Input
Output
Sample Input
Sample Output
HINT
【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
对于100%的数据,1≤N≤1000000;0≤K≤N;
Source
答案就是交集至少为k - 至少为k+1......
我们先钦定k个元素,这是Cnk的。然后发现有2n-k个集合包含它,这些集合都可以选或不选,所以是22^(n-k)-1
然后我们发现还是有多算的,至少为j的元素多算了Cjk次,因为我们可以从这Cjk个方案中导出这一种。于是还要乘上这个系数。
那个2的连续阶乘,把上面的对phi(p)取模然后快速幂。
#include <cstdio> const int MO = , phi = ; const int N = ; int f[N], pw[N], pww[N], fac[N], inv[N], invn[N]; inline int C(int n, int m) {
if(n < m || n < || m < ) return ;
return 1ll * fac[n] * invn[m] % MO * invn[n - m] % MO;
} inline int qpow(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1ll * ans * a % MO;
a = 1ll * a * a % MO;
b = b >> ;
}
return ans;
} int main() { int n, k;
scanf("%d%d", &n, &k);
pww[] = pw[] = fac[] = inv[] = invn[] = ;
fac[] = inv[] = invn[] = ; pw[] = pww[] = ;
for(int i = ; i <= n; i++) {
fac[i] = 1ll * fac[i - ] * i % MO;
inv[i] = 1ll * inv[MO % i] * (MO - MO / i) % MO;
invn[i] = 1ll * invn[i - ] * inv[i] % MO;
pw[i] = pw[i - ] * % MO;
pww[i] = pww[i - ] * % (phi);
} int ans = ;
for(int i = k; i <= n; i++) {
int temp = 1ll * (qpow(, pww[n - i]) - ) * C(n, i) % MO * C(i, k) % MO;
if((i - k) & ) ans = (ans - temp) % MO;
else ans = (ans + temp) % MO;
}
printf("%d\n", (ans + MO) % MO);
return ;
}
AC代码
还可以用类似bzoj3622的方法,倒着逐步推出正确的结果。虽然会超时但是思想值得借鉴。
#include <cstdio> const int MO = , phi = ; const int N = ; int f[N], pw[N], pww[N], fac[N], inv[N], invn[N]; inline int C(int n, int m) {
if(n < m || n < || m < ) return ;
return 1ll * fac[n] * invn[m] % MO * invn[n - m] % MO;
} inline int qpow(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1ll * ans * a % MO;
a = 1ll * a * a % MO;
b = b >> ;
}
return ans;
} int main() { int n, k;
scanf("%d%d", &n, &k);
pww[] = pw[] = fac[] = inv[] = invn[] = ;
fac[] = inv[] = invn[] = ; pw[] = pww[] = ;
for(int i = ; i <= n; i++) {
fac[i] = 1ll * fac[i - ] * i % MO;
inv[i] = 1ll * inv[MO % i] * (MO - MO / i) % MO;
invn[i] = 1ll * invn[i - ] * inv[i] % MO;
pw[i] = pw[i - ] * % MO;
pww[i] = pww[i - ] * % (phi);
} int ans = ; /*for(int i = k; i <= n; i++) {
int temp = 1ll * (qpow(2, pww[n - i]) - 1) * C(n, i) % MO * C(i, k) % MO;
if((i - k) & 1) ans = (ans - temp) % MO;
else ans = (ans + temp) % MO;
}*/
for(int i = n; i >= k; i--) {
f[i] = 1ll * (qpow(, pww[n - i]) - ) * C(n, i) % MO;
for(int j = i + ; j <= n; j++) {
f[i] -= 1ll * f[j] * C(j, i) % MO;
if(f[i] < ) f[i] += MO;
}
} printf("%d\n", (f[k] + MO) % MO);
return ;
}
70分TLE代码
bzoj2839 集合计数的更多相关文章
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
- bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...
- BZOJ2839:集合计数(容斥,组合数学)
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...
- BZOJ2839 集合计数 容斥
题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...
- BZOJ2839集合计数
题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~ ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- 2019.02.09 bzoj2839: 集合计数(容斥原理)
传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk种方案 ...
随机推荐
- eclipse 编码
单个修改 右击 选择properties
- MyBatis的demo
把以前写的关于mybatis的demo放在这边,以便查看. 目录结构: package com.test.mybatis.util; import java.io.IOException; impor ...
- css 浮动问题 display显示 和 光标设置cursor
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>浮 ...
- centOS7 下配置和启动maria数据库
从最新版本的linux系统开始,默认的是 Mariadb而不是mysql! 使用系统自带的repos安装很简单: yum install mariadb mariadb-server systemct ...
- React 学习(二) ---- props验证与默认属性
在上一节中, 我们提到了props, 组件之间数据的传递使用props. 我们调用组件时可以设置props, 组件内部通过props获取. 为了props 使用更加友好, React 提供了简单的验证 ...
- Mac下安装MySQL(Mac 10.12)
系统:Mac OS 10.12 MySQL:5.7.15 前言: 安装mysql有两种方式:1为官方下载dmg安装包.2为使用brew进行安装. 安装步骤: 一.官方下载dmg安装包进行安装 1.登陆 ...
- BZOJ5417[Noi2018]你的名字——后缀自动机+线段树合并
题目链接: [Noi2018]你的名字 题目大意:给出一个字符串$S$及$q$次询问,每次询问一个字符串$T$有多少本质不同的子串不是$S[l,r]$的子串($S[l,r]$表示$S$串的第$l$个字 ...
- TP5.x——update更新成功但是返回是0
原因 更新的数据和表中的数据一致,这个官方文档上有说明的.所以大家使用这个语句的话需要注意 update 方法返回影响数据的条数,没修改任何数据返回 0 解决方法:我是进行了判断如何和数据库一致直接返 ...
- P1020 导弹拦截
思路:贪心思路 拿比飞来的导弹高并且高度和飞来的导弹最相近的拦截系统去接, 如果全部都比导弹矮,那就新开一个拦截系统 #include<cstdio> #include<string ...
- Matplotlib学习---用matplotlib画柱形图,堆积柱形图,横向柱形图(bar chart)
这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/hot-dog-cont ...